Skip to main content

Modeling of global temperature control

Abstract

A natural mechanism is proposed for heating and cooling the surface of the Earth so that all living beings can live in a consistent comfortable temperature condition throughout the seasons. To accomplish this, photon particles are remodeled by implementing the Bose–Einstein (B–E) dormant photonic dynamics of the Earth surface plane. Simply, the proposed decoded B–E photons are induced by the photonic band-gap of the Earth’s surface to convert solar photons into cooling-state photons, here named Hossain cooling photons (HcPs), which will eventually cool the Earth’s surface. Interestingly, an HcP can be converted into a thermostate photon, named the Hossain thermal photon (HtP), by implementing the Higgs boson (H → γγ) electromagnetic quantum fields utilized by the Earth’s electromagnetic force. The H → γγ quantum field of the Earth surface plane has an extremely small weak force, which will force the electrically charged HcP quantum to convert into an HtP to naturally heat the Earth’s surface. The formation of HcP particles from the photon particles and then the conversion of HcP to HtP are proven by a set of mathematical tests in this research, which reveals the feasibility that the deformed photons (HcP and HtP) can actively interact with the Earth’s surface to naturally cool and heat the Earth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

(Source: Matin 2007. Science)

Fig. 3

Source: Martin 2007. Science)

Fig. 4
Fig. 5

(Source: Matin 2007. Science)

Fig. 6
Fig. 7

(Source: Martin 2007. Science)

Fig. 8
Fig. 9

(SourceMartin 2007. Science)

References

  • Agger, A. K., & Sørensen, A. H. (1997). Atomic and molecular structure and dynamics. Physical Review A, 55, 402–413.

    CAS  Google Scholar 

  • Arnold, P., Moore, G. D., & Yaffe, L. G. (2001). Photon Emission from Ultrarelativistic Plasmas. Journal of High Energy Physics, 11, 057.

    Google Scholar 

  • Artemyev, N., Jentschura, U. D., Serbo, V. G., & Surzhykov, A. (2012). Strong electromagnetic field effects in ultra-relativistic heavy-ion collisions. The European Physical Journal B, 72, 1935.

    Google Scholar 

  • Baur, G., Hencken, K., & Trautmann, D. (2007). Revisiting unitarity corrections for electromagnetic processes in collisions of relativistic nuclei. Physics Reports, 453, 1–27.

    CAS  Google Scholar 

  • Baur, G., Hencken, K., Trautmann, D., Sadovsky, S., & Kharlov, Y. (2002). Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams. Physics Reports, 364, 359–450.

    CAS  Google Scholar 

  • Becker, U., Grün, N., & Scheid, W. (1987). K-shell ionisation in relativistic heavy-ion collisions. Journal of Physics B: Atomic and Molecular Physics, 20, 2075.

    CAS  Google Scholar 

  • Belkacem, A., Gould, H., Feinberg, B., Bossingham, R., & Meyerhof, W. E. (1993). Semiclassical dynamics and relaxation. Physical Review Letters, 71, 1514–1517.

    CAS  Google Scholar 

  • Benavides, N. D., & Chapman, P. L. (2008). Modeling the effect of voltage ripple on the power output of photovoltaic modules. IEEE Transactions on Industrial Electronics, 55, 2638–2643.

    Google Scholar 

  • Boukhezzar, B., & Siguerdidjane, H. (2009). Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Conversion and Management, 50, 885–892.

    Google Scholar 

  • Cardoso, V., Lemos, J. P., & Yoshida, S. (2004). Quasinormal modes of Schwarzschild black holes in four and higher dimensions. Physical Review D, 69(4), 044004.

    Google Scholar 

  • Celik, A. N., & Acikgoz, N. (2007). Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models. Applied Energy, 84, 1–15.

    CAS  Google Scholar 

  • Chihhui, W. (2012). Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic systems. Journal of Optics.

  • De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80, 78–88.

    Google Scholar 

  • Douglas, J. S., Habibian, H., Hung, C.-L., Gorshkov, A. V., Kimble, H. J., & Chang, D. E. (2015). Quantum many-body models with cold atoms coupled to photonic crystals. Nature Photonics, 9, 326–331.

    CAS  Google Scholar 

  • Eichler, J., & Stöhlker, T. (2007). Radiative electron capture in relativistic ion-atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Physics Reports, 439, 1–99.

    CAS  Google Scholar 

  • Faida, H., & Saadi, J. (2010). Modelling, control strategy of DFIG in a wind energy system and feasibility study of a wind farm in Morocco. IREMOS, 3, 1350–1362.

    Google Scholar 

  • Ghennam, T., Berkouk, E. M., & Francois, B. (2007). A vector hysteresis current control applied on three-level inverter. Application to the active and reactive power control of doubly fed induction generator based wind turbine. IREE, 2, 250–259.

    Google Scholar 

  • Gopal, C., Mohanraj, M., Chandramohan, P., & Chandrasekar, P. (2013). Renewable energy source water pumping systems—a literature review. Renewable Sustainable Energy Reviews, 25, 351–370. https://doi.org/10.1016/j.rser.2013.04.012.

    Article  Google Scholar 

  • Güçlü, M. C., Li, J., Umar, A. S., Ernst, D. J., & Strayer, M. R. (1999). Electromagnetic lepton pair production in relativistic heavy-ion collisions. Annalen der Physik, 272, 7–48.

    Google Scholar 

  • Gupta, N., Singh, S. P., Dubey, S. P., & Palwalia, D. K. (2011). Fuzzy logic controlled three-phase three-wired shunt active power filter for power quality improvement. IREE, 6, 1118–1129.

    Google Scholar 

  • Hossain, M. F. (2016a). Solar energy integration into advanced building design for meeting energy demand. International Journal of Energy Research, 40, 1293–1300.

    Google Scholar 

  • Hossain, M. F. (2016b). Production of clean energy from cyanobacterial biochemical products. Strategic Planning for Energy and the Environment, 3, 6–23.

    Google Scholar 

  • Hossain, M. F. (2016c). Theory of global cooling. Energy, Sustainability, and Society, 6, 1–5.

    CAS  Google Scholar 

  • Hossain, M. F. (2017a). Invisible transportation infrastructure technology to mitigate energy and environment. Energy, Sustainability, and Society, 7, 27. https://doi.org/10.1186/s13705-017-0128-x.

    Article  Google Scholar 

  • Hossain, M. F. (2017b). Application of advanced technology to build a vibrant environment on planet Mars. International Journal of Environmental Science and Technology., 14(12), 2709–2720.

    CAS  Google Scholar 

  • Hossain, M. F. (2017c). Green science: Independent building technology to mitigate energy, environment, and climate change. Renewable and Sustainable Energy Reviews, 73, 695–705.

    Google Scholar 

  • Hossain, M. F. (2017d). Green science: Advanced building design technology to mitigate energy and environment. Renewable and Sustainable Energy Reviews, 81, 3051–3060.

    Google Scholar 

  • Hossain, M. F. (2017e). Design and construction of ultra-relativistic collision PV panel and its application into building sector to mitigate total energy demand. Journal of Building Engineering., 9, 147–154.

    Google Scholar 

  • Hossain, M. F. (2018a). Sustainable design and build. In Monograph (468 p) Elsevier. ISBN: 9780128167229.

  • Hossain, M. F. (2018b). Green science: Advanced building design technology to mitigate energy and environment. Renewable and Sustainable Energy Reviews, 81(2), 3051–3060.

    CAS  Google Scholar 

  • Hossain, M. F. (2018c). Photonic thermal energy control to naturally cool and heat the building. Applied Thermal Engineering., 131, 576–586.

    CAS  Google Scholar 

  • Hossain, M. F. (2018d). Green science: Decoding dark photon structure to produce clean energy. Energy Reports, 4, 41–48.

    Google Scholar 

  • Hossain, M. F. (2018e). Photon application in the design of sustainable buildings to console global energy and environment. Applied Thermal Engineering., 141, 579–588.

    Google Scholar 

  • Hossain, M. F. (2018f). Transformation of dark photon into sustainable energy. International Journal of Energy and Environmental Engineering., 9, 99–110.

    CAS  Google Scholar 

  • Hossain, M. F. (2018g). Global environmental vulnerability and the survival period of all living beings on earth. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1722-y.

    Article  Google Scholar 

  • Hossain, M. F. (2018h). Photon energy amplification for the design of a micro PV panel. International Journal of Energy Research. https://doi.org/10.1002/er.4118.

    Article  Google Scholar 

  • Hossain, M. F. (2018i). Bose–Einstein (BE) photonic energy structure reformation for cooling and heating the premises naturally. Advanced Thermal Engineering., 142, 100–109.

    Google Scholar 

  • Hossain, M. F., & Fara, N. (2016). Integration of wind into running vehicles to meet its total energy demand. Energy, Ecology, and Environment., 2(1), 35–48.

    Google Scholar 

  • Huot, S. C., Kovtun, P., Moore, G. D., Starinets, A., & Yaffe, L. G. (2006). Photon and dilepton production in supersymmetric Yang-Mills plasma. Journal of High Energy Physics, 2006(12), 015.

    Google Scholar 

  • Kamal, E., Koutb, M., Sobaih, A. A., & Abozalam, B. (2010). An intelligent maximum power extraction algorithm for hybrid wind-diesel-storage system. International Journal of Electrical Power & Energy Systems, 32, 170–177.

    Google Scholar 

  • Laine, M. (2013). Thermal 2-loop master spectral function at finite momentum. Journal of High Energy Physics, 2013, 83.

    Google Scholar 

  • Langer, L., Poltavtsev, S. V., Yugova, I. A., Salewski, M., Yakovlev, D. R., Karczewski, G., et al. (2014). Access to long-term optical memories using photon echoes retrieved from semiconductor spins. Nature Photonics, 8, 851–857.

    CAS  Google Scholar 

  • Li, Q., Xu, D. Z., Cai, C. Y., & Sun, C. P. (2013). Recoil effects of a motional scatterer on single-photon scattering in one dimension. Scientific Reports, 3(1), 1–6.

    Google Scholar 

  • Lo, P. Y., Xiong, H. N., & Zhang, W. M. (2015). Breakdown of Bose–Einstein distribution in photonic crystals. Scientific reports, 5, 9423.

    CAS  Google Scholar 

  • Martin, F. (2007). Single photon-induced symmetry breaking of H2 dissociation. Science, 325, 629–633.

    Google Scholar 

  • Najjari, B., Voitkiv, A. B., Artemyev, A., & Surzhykov, A. (2009). Simultaneous electron capture and bound-free pair production in relativistic collisions of heavy nuclei with atoms. Physical Review A, 80, 012701.

    Google Scholar 

  • Park, J., Kim, H., Cho, Y., & Shin, C. (2014). Simple modeling and simulation of photovoltaic panels using matlab/simulink. Advanced Science and Technology Letters, 73, 147–155.

    Google Scholar 

  • Pregnolato, T., Lee, E. H., Song, J. D., Stobbe, S., & Lodahl, P. (2015). Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 6, 8655.

    Google Scholar 

  • Reinhard, A., Volz, T., Winger, M., Badolato, A., Hennessy, K. J., Hu, E. L., et al. (2012). Strongly correlated photons on a chip. Nature Photonics, 6, 93–96.

    CAS  Google Scholar 

  • Robyns, B., Francois, B., Degobert, P., & Hautier, J. P. (2012). Vector control of induction machines. London: Springer.

    Google Scholar 

  • Sharma, K. G., Bhargava, A., & Gajrani, K. (2013). Stability analysis of DFIG based wind turbines connected to electric grid. IREMOS, 6, 879–887.

    Google Scholar 

  • Sivasankar, G., & Kumar, V. S. (2013). Improving low voltage ride through of wind generators using STATCOM under symmetric and asymmetric fault conditions. IREMOS, 6, 1212–1218.

    Google Scholar 

  • Soedibyo, A., Pamuji, F. A., & Ashari, M. (2013). Grid quality hybrid power system control of microhydro, wind turbine and fuel cell using fuzzy logic. IREMOS, 6, 1271–1278.

    Google Scholar 

  • Soon, J. J., Low, K. S. (2012). Optimizing photovoltaic model parameters for simulation. In IEEE international symposium on industrial electronics (pp. 1813–1818).

  • Szafron, R., & Czarnecki, A. (2016). High-energy electrons from the muon decay in orbit: Radiative corrections. Physics Letters B, 753, 61–64.

    CAS  Google Scholar 

  • Tame, M. S., McEnery, K. R., Özdemir, Ş. K., Lee, J., Maier, S. A., & Kim, M. S. (2013). Quantum plasmonics. Nature Physics, 9(6), 329–340.

    CAS  Google Scholar 

  • Tan, Y. T., Kirschen, D. S., & Jenkins, N. (2004). A model of PV generation suitable for stability analysis. IEEE Transactions on Energy Conversion, 19, 748–755.

    Google Scholar 

  • Tu, M. W. Y., & Zhang, W. M. (2008). Non-Markovian decoherence theory for a double-dot charge qubit. Physical Review B, 78, 235311.

    Google Scholar 

  • Wang, G., Zhao, K., Shi, J., Chen, W., Zhang, H., Yang, X., et al. (2017). An iterative approach for modeling photovoltaic modules without implicit equations. Applied Energy, 202, 189–198.

    Google Scholar 

  • Xiao, W., Dunford, W. G., Capal, A. (2004). A novel modeling method for photovoltaic cells. In 35th Annual IEEE power electronics specialists conference, Aachen, Germany (pp. 1950––1956).

  • Xiao, Y. F., Li, M., Liu, Y. C., Li, Y., Sun, X., & Gong, Q. (2010). Asymmetric Fano resonance analysis in indirectly coupled microresonators. Physical Review A, 82, 065804.

    Google Scholar 

  • Yan, W. B., & Fan, H. (2014). Single-photon quantum router with multiple output ports. Scientific Reports, 4, 4820.

    Google Scholar 

  • Yang, L., Wang, S., Zeng, Q., Zhang, Z., Pei, T., Li, Y., et al. (2011). Efficient photovoltage multiplication in carbon nanotubes. Nature Photonics, 5, 672–676.

    CAS  Google Scholar 

  • Zhu, Y., Hu, X., Yang, H., & Gong, Q. (2014). On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Scientific Reports., 4, 3752.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Faruque Hossain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.F. Modeling of global temperature control. Environ Dev Sustain 23, 7432–7453 (2021). https://doi.org/10.1007/s10668-020-00924-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00924-6

Keywords

  • Reformation of Bose–Einstein photon dynamics
  • Higgs boson BR (H → γγ ) quantum fields
  • Hossain cooling photon (HcP )
  • Hossain thermal photon (HtP )
  • Control of Earth’s temperature