Skip to main content

Advertisement

Log in

Herbaceous diversity and biomass under different fire regimes in a seasonally dry forest ecosystem

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The present work deals with the impact of forest fire over herb community along with changes in soil micronutrient status and C (carbon) storage. The present investigation was carried out in Bhoramdeo wildlife sanctuary, India. The entire area was divided into four distinct sites, i.e., no fire, low fire, medium fire (MFZ) and high fire zones depending upon geo-referenced data and ground truth verification. Quantification of the herb was done within 1 ha grid plots by laying random quadrats of 50 × 50 cm. Soil sampling was done at 0–10 cm and 10–20 cm depths. The micronutrient status of the soil was analysed through atomic absorption spectrophotometer. Most studies focuses on forest land degradation through depletion of soil macronutrient status under fire incidence. The present work involves a new approach to evaluate the impact of different fire regimes on herb community along with changes in soil micronutrient status. MFZ reported highest species, families, density, biomass and C storage. Zn (zinc), Mn (manganese), S (sulphur), nitrate N (nitrogen) and ammonical N level decreased with the gradual increment of the soil depth from 0 to 20 cm under various fire regimes. Cu (copper) level increased with the gradual increase in the soil depth from 0 to 20 cm under various fire regimes. C stock and biomass varied significantly in different fire regimes. Species such as Cassia tora, Cynodon dactylon, Eragrostis tenella and Setaria glauca recorded high C storage under MFZ and represented their higher presence and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ares, A., Berryman, S. D., & Puettmann, K. J. (2009). Understory vegetation response to thinning disturbance of varying complexity in coniferous stands. Applied Vegetation Science, 12, 472–487. https://doi.org/10.1111/j.1654-109X.2009.01042.x.

    Article  Google Scholar 

  • Armenteras, D., Gonzalez, T. M., & Retana, J. (2013). Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biological Conservation, 159, 73–79. https://doi.org/10.1016/J.BIOCON.2012.10.026.

    Article  Google Scholar 

  • Azizi, P., Shafiei, A. B., Akbarinia, M., Jalali, S. G., & Hosseini, S. M. (2006). Effect of fire on herbal layer biodiversity in a temperate forest of northern Iran. Pakistan Journal of Biological Sciences, 9, 2273–2277. https://doi.org/10.3923/pjbs.2006.2273.2277.

    Article  Google Scholar 

  • Biswas, S. R., & Mallik, A. U. (2010). Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology, 91(1), 28–35.

    Article  Google Scholar 

  • Boerner, R. E. J., Huang, J., & Hart, S. C. (2009). Impacts of fire and fire surrogate treatments on forest soil properties: A meta-analysis approach. Ecological Application, 19, 338–358. https://doi.org/10.1890/07-1767.1.

    Article  Google Scholar 

  • Bonham, C. D. (2013). Measurements for terrestrial vegetation (2nd ed.). Chichester: Wiley-Blackwell.

    Book  Google Scholar 

  • Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., et al. (2009). Fire in the earth system. Science, 324, 481–484. https://doi.org/10.1126/SCIENCE.1163886.

    Article  CAS  Google Scholar 

  • Chen, Y., Liu, Z., Rao, X., Wang, X., Liang, C., Lin, Y., et al. (2015). Carbon storage and allocation pattern in plant biomass among different forest plantation stands in Guangdon, China. Forest, 6, 794–808.

    Article  Google Scholar 

  • Connell, J. H. (1978). Diversity in tropical rain forest and coral reefs. Science, 199(4335), 1302–1310.

    Article  CAS  Google Scholar 

  • Curtis, J. T., & Cottom, G. (1956). Plant ecology workbook, laboratory field manual (p. 193). Minnesota: Burgess Publishing.

    Google Scholar 

  • Curtis, J. T., & McIntosh, R. P. (1950). The interrelations of certain analytic and synthetic phytosociological characters. Ecology, 31, 434–455. https://doi.org/10.2307/1931497.

    Article  Google Scholar 

  • DeBano, L. F. (1990). The effect of forest fire on soil properties. Symposium on management and productivity of Western-Montane forest soil. 151-156, Boise, ID, USA.

  • DeBano, L. F., & Conard, C. E. (1978). The effect of fire on nutrients in a chaparral ecosystem. Ecology, 59(3), 489–497. https://doi.org/10.2307/1936579.

    Article  CAS  Google Scholar 

  • DeBano, L. F., Neary, D. G., & Folliott, P. F. (1998). Fire’s effects on ecosystems. New York: Wiley.

    Google Scholar 

  • Devagiri, G. M., Money, S., Singh, S., Dadhawal, V. K., Patil, P., Khaple, A., et al. (2013). Assessment of above ground biomass and carbon pool in different vegetation types of south western part of Karnataka, India using spectral modeling. Tropical Ecology, 54(2), 149–165.

    Google Scholar 

  • Garcia, M. S., & Gonzalez, P. S. (2008). Short and medium term effects of fire and fire- fighting chemicals on soil micronutrient availability. The Science of Total Environment, 407(1), 297–303. https://doi.org/10.1016/j.scitotenv.2008.08.021.

    Article  CAS  Google Scholar 

  • Gonzalez, P. J., Cala, R. V., & Iglesias, L. T. (1996). Forms of Mn in soils affected by a forest fire. The Science of Total Environment, 181, 231–236. https://doi.org/10.1016/0048-9697(95)05022-1.

    Article  Google Scholar 

  • Guo, Q. (2001). Early post-fire succession in California chaparral: Changes in diversity, density, cover and biomass. Ecological Research, 16, 471–485. https://doi.org/10.1046/j.1440-1703.2001.00410.x.

    Article  Google Scholar 

  • Hamman, S. T., Burke, I. C., & Knapp, E. E. (2008). Soil nutrients and microbial activity after early and late season prescribed burns in a Sierra Nevada mixed conifer forest. Forest Ecology and Management, 256, 367–374. https://doi.org/10.1016/j.foreco.2008.04.030.

    Article  Google Scholar 

  • Hart, S. A., & Chen, H. Y. H. (2008). Fire, logging, and over-story affect understory abundance, diversity, and com-position in boreal forest. Ecological Monographs, 78, 123–140. https://doi.org/10.1890/06-2140.1.

    Article  Google Scholar 

  • IFFN. (2006). Effect of forest fire protection on plant diversity in a tropical deciduous dipterocarp-oak forest. Thailand, 34, 64–71.

    Google Scholar 

  • Jhariya, M. K. (2014). Effect of forest fire on microbial biomass, storage and sequestration of carbon in a tropical deciduous forest of Chhattisgarh. Ph.D. Thesis, I.G.K.V., Raipur (C.G.), pp. 259.

  • Jhariya, M. K. (2017a). Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environmental Monitoring and Assessment, 189(10), 1–15. https://doi.org/10.1007/s10661-017-6246-2.

    Article  CAS  Google Scholar 

  • Jhariya, M. K. (2017b). Influences of forest fire on forest floor and litterfall dynamics in Bhoramdeo Wildlife Sanctuary (C.G.), India. Journal of Forest and Environmental Science, 33(4), 330–341. https://doi.org/10.7747/jfes.2017.33.4.330.

    Article  Google Scholar 

  • Jhariya, M. K., Banerjee, A., Meena, R. S., & Yadav, D. K. (2019). Sustainable agriculture, Forest and Environmental Management. Springer, ISBN 978-981-13-6830-1 (e), 978-981-13-6829-5 (p), 606 p. https://doi.org/10.1007/978-981-13-6830-1.

  • Jhariya, M. K., Bargali, S. S., Swamy, S. L., & Kittur, B. (2012). Vegetational structure, diversity and fuel loads in fire affected areas of tropical dry deciduous forests in Chhattisgarh. Vegetos, 25(1), 210–224.

    Google Scholar 

  • Jhariya, M. K., Bargali, S. S., Swamy, S. L., Kittur, B., Bargali, K., & Pawar, G. V. (2014). Impact of forest fire on biomass and carbon storage pattern of tropical deciduous forests in Bhoramdeo wildlife sanctuary, Chhattisgarh. International Journal of Ecology and Environmental Sciences, 40(1), 57–74.

    Google Scholar 

  • Jhariya, M. K., Kittur, B. H., & Bargali, S. S. (2016). Assessment of herbaceous biomass: a study in Rowghat mining areas (Chhattisgarh), India. Journal of Applied and Natural Science, 8(2), 645–651.

    Article  CAS  Google Scholar 

  • Jhariya, M. K., & Yadav, D. K. (2018). Biomass and carbon storage pattern in natural and plantation forest ecosystem of Chhattisgarh, India. Journal of Forest and Environmental Science, 34(1), 1–11. https://doi.org/10.7747/JFES.2018.34.1.1.

    Article  Google Scholar 

  • Keeley, J. E. (2002). Native Americans impacts on fire regimes of the California coastal ranges. Journal of Biogeography, 29(3), 303–320. https://doi.org/10.1046/j.1365-2699.2002.00676.x.

    Article  Google Scholar 

  • Keith, R. P., Thomas, T. V., Tania, L. S., & Rosemary, L. S. (2010). Understory vegetation indicates historic fire regimes in ponderosa pine-dominated ecosystems in the Colorado Front Range. Journal of Vegetation Science, 21(3), 488–499. https://doi.org/10.1111/j.1654-1103.2009.01156.x.

    Article  Google Scholar 

  • Khan, N., Jhariya, M. K., Yadav, D. K., & Banerjee, A. (2020a). Herbaceous dynamics and CO2 mitigation in an urban setup: A case study from Chhattisgarh, India. Environmental Science and Pollution Research, 27(3), 2881–2897. https://doi.org/10.1007/s11356-019-07182-8.

    Article  CAS  Google Scholar 

  • Khan, N., Jhariya, M. K., Yadav, D. K., & Banerjee, A. (2020b). Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environmental Science and Pollution Research, 27(5), 5418–5432. https://doi.org/10.1007/s11356-019-07172-w.

    Article  CAS  Google Scholar 

  • Khanna, P. K., & Raison, R. J. (1986). Effects of fire intensity on solution chemistry of surface soil under a Eucalyptus pauciflora forest. Australian Journal of Soil Research, 24(3), 423–434. https://doi.org/10.1071/SR9860423.

    Article  CAS  Google Scholar 

  • Kittur, B., Swamy, S. L., Bargali, S. S., & Jhariya, M. K. (2014). Wildland fires and moist deciduous forests of Chhattisgarh, India: Divergent component assessment. Journal of Forestry Research, 25(4), 857–866. https://doi.org/10.1007/s11676-014-0471-0.

    Article  CAS  Google Scholar 

  • Knicker, H. (2007). How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85(1), 91–118. https://doi.org/10.1007/s10533-007-9104-4.

    Article  CAS  Google Scholar 

  • Kula, E., & Jankovska, Z. (2013). Forest fires and their causes in Czench Republic (1992–2004). Journal of Forest Science, 59, 41–53. https://doi.org/10.17221/36/2012-JFS.

    Article  Google Scholar 

  • Kumar, A., Jhariya, M. K., Yadav, D. K., & Banerjee, A. (2017). Vegetation dynamics in Bishrampur collieries of Northern Chhattisgarh, India: Eco-restoration and management perspectives. Environmental Monitoring and Assessment, 189(8), 1–29. https://doi.org/10.1007/s10661-017-6086-0.

    Article  CAS  Google Scholar 

  • Lenihan, M. J., Bachelet, D., Ronald, P. N., & Raymond, D. (2008). Response of vegetation distribution, ecosystem productivity and fire to climate change scenarios for California. Climate Change, 87(1), S215–S230. https://doi.org/10.1007/s10584-007-9362-0.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA soil test for Zn, Fe, Mn and Cu. Soil Science Society of America Journal, 42, 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.

    Article  CAS  Google Scholar 

  • Manral, V., Bargali, K., Bargali, S. S., & Shahi, C. (2020). Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya. India. Ecological Process, 9, 30. https://doi.org/10.1186/s13717-020-00235-8.

    Article  Google Scholar 

  • Marafa, L. M., & Chau, K. (1999). Effect of hill fire on upland soil in Hong Kong. Forest Ecology and Management, 120(1–3), 97–104. https://doi.org/10.1016/S0378-1127(98)00528-3.

    Article  Google Scholar 

  • Murphy, J. D., Johnson, D. W., & Walker, W. W. (2006). Wildfire effects on soil nutrients and leaching in a Tahoe basin watershed. Journal of Environmental Quality, 35, 479–489. https://doi.org/10.2134/jeq2005.0144.

    Article  CAS  Google Scholar 

  • Nang, B. D., & Dioggban, J. (2015). Forest composition and productivity changes as affected by human activities in the natural forest-savanna zone in Northern Ghana. Journal of Ecology and Natural Environment, 7(4), 94–105.

    Article  Google Scholar 

  • Newbery, D. M., Campbell, E. J. F., Proctor, J., & Still, M. J. (1996). Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia. Species composition and patterns in the understorey. Vegetatio, 122, 193–220. https://doi.org/10.1007/BF00044700.

    Article  Google Scholar 

  • Nimmo, D. G., Kelly, L. T., Farnsworth, L. M., Watson, S. J., & Bennett, A. F. (2014). Why do some species have geographically varying responses to fire history? Ecography, 37, 805–813. https://doi.org/10.1111/ECOG.00684.

    Article  Google Scholar 

  • Nizam, M. S., Jeffri, A. R., & Latiff, A. (2013). Structure of tree communities and their association with soil properties in two fan-palm dominated forests of east coast Peninsular Malaysia. Tropical Ecology, 54(2), 213–226.

    Google Scholar 

  • Oraon, P. R. (2012). Structure and dry matter dynamics along the disturbance gradient of tropical dry deciduous forest in Bhoramdeo Wildlife Sanctuary, Chhattisgarh. Ph.D. Thesis, I.G.K.V., Raipur (C.G.).

  • Oraon, P. R., Singh, L., & Jhariya, M. K. (2014). Variations in herbaceous composition of dry tropics following anthropogenic disturbed environment. Current World Environment, 9(3), 967–979. https://doi.org/10.12944/CWE.9.3.50.

    Article  Google Scholar 

  • Oraon, P. R., Singh, L., & Jhariya, M. K. (2015). Shrub species diversity in relation to anthropogenic disturbance of bhoramdeo wildlife sanctuary, Chhattisgarh. Environment and Ecology, 33(2A), 996–1002.

    Google Scholar 

  • Oraon, P. R., Singh, L., & Jhariya, M. K. (2018). Forest floor biomass, litterfall and physico-chemical properties of soil along the anthropogenic disturbance regimes in tropics of Chhattisgarh, India. Journal of Forest and Environmental Science, 34(5), 359–375. https://doi.org/10.7747/JFES.2018.34.5.359.

    Article  Google Scholar 

  • Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.). (1982). Methods of soil analysis. Part 2, 2nd ed.. Madison, WI: The American Society of Agronomy.

    Google Scholar 

  • Pandey, R., Vibhuti, Karki, H., Awasthi, P., Bargali, K., & Bargali, S. S. (2018). Effect of wildfire on herbaceous vegetation in cypress mixed Oak Forest of NAINITAL, Kumaun Himalaya, India. Current Trends in Forest Research, 2, 121. https://doi.org/10.29011/2638-0013.100021.

    Article  Google Scholar 

  • Rasingam, L., & Parthasarathy, N. (2009). Diversity of understory plants in undisturbed and disturbed tropical lowland forests of Little Andaman Island, India. Biodiversity Conservation, 18, 1045–1065. https://doi.org/10.1007/s10531-008-9496-z.

    Article  Google Scholar 

  • Singh, L., & Singh, J. S. (1991). Species structure, dry matter dynamics and carbon flux of a dry tropical forest in India. Annals of Botany, 68(3), 263–273. https://doi.org/10.1093/oxfordjournals.aob.a088252.

    Article  Google Scholar 

  • Somsak, L., Dlapa, P., Kollar, J., Kubicek, F., Simonovic, V., Janitor, A., et al. (2009). Fire impact on secondary pine forest and soil in the Borska nizina lowland (SW Slovakia). Ekologia (Bratislava), 28, 52–65. https://doi.org/10.4149/ekol_2009_01_52.

    Article  CAS  Google Scholar 

  • Verma, S., & Jayakumar, S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: A review. Proceedings of the International Academy of Ecology and Environment Sciences, 2(3), 16–176.

    Google Scholar 

  • Whittaker, R. H. (1966). Forest dimensions and production in the Great Smoky Mountains. Ecology, 47, 103–121. https://doi.org/10.2307/1935749.

    Article  Google Scholar 

  • Yadav, D. K., Ghosh, L., & Jhariya, M. K. (2017). Forest fragmentation and stand structure in tropics: Stand structure (p. 116). Diversity and Biomass: Lap Lambert Academic Publishing, Saarbrucken.

    Google Scholar 

Download references

Acknowledgements

The first author is grateful to Dept. of Forestry, Indira Gandhi Krishi Vishwavidyalaya, Raipur, and forest department of Chhattisgarh for necessary support. Financial support from UGC (RGNF), New Delhi, during PhD. is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Jhariya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhariya, M.K., Singh, L. Herbaceous diversity and biomass under different fire regimes in a seasonally dry forest ecosystem. Environ Dev Sustain 23, 6800–6818 (2021). https://doi.org/10.1007/s10668-020-00892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00892-x

Keywords

Navigation