Skip to main content

Advertisement

Log in

Quantification of drought severity change in Ethiopia during 1952–2017

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Drought is considered as a frequent environmental disaster that persists long enough to adversely influence economic and social development for the last few decades, particularly in Ethiopia. Here, we examined the occurrence of drought severity change in Ethiopia using standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), China Z Index (CZI) and percent of normal precipitation (PNP). Mann Kendal and Sen’s method tests also used to compute trends and magnitudes of drought occurrences. The years 1953, 1961–1964, 1972–1976, 1984–1987, 2002–2004 and 2011–2014 were recorded as the most intense drought episodes ranging from − 1.58 to − 4.31. With some exceptions, the years 1984, 1986, 2002 and 2014/15 were the direst extreme drought occurrence across all locations. The interpolated spatial extent of drought frequency was highest in central, north and southern regions of the country, respectively. More extreme and severe droughts are identified from SPI and SPEI time series than CZI and PNP at many stations across the domain. In 3-month time scales, severe/extreme drought incidences are intra-annual and 12- and 24-month time scales are inter-annual. SPI and SPEI have stronger correlation than SPI and CZI at all timescales. This kind of inventory drought characterization can be used as a basis to quantitatively prioritize specific intervention at the regional level in responding to drought impacts due to climate change with available resources. By large, it will help to foster a vital shift in the way drought is perceived and coped in the region, taking into account the country’s economic, social and environmental context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amsalu, A., & Adem, A. (2009). Assessment of climate change induced hazards, impacts, and responses in the southern lowlands of Ethiopia. Addis Ababa: Forum for Social Studies.

    Google Scholar 

  • Bayissa, A., Moges, A., Xuan, Y., Van Andel, J., Maskey, S., Solomatine, D., et al. (2015). Spatio temporal assessment of meteorological drought under the influence of varying record length: the case of upper Blue Nile basin, Ethiopia. Hydrological Sciences Journal, 60(11), 1927–1942. https://doi.org/10.1080/02626667.2015.

    Article  Google Scholar 

  • Beltrando, G., & Camberlin, P. (1993). Interannual variability of rainfall in the eastern horn of Africa and indicators of atmospheric circulation. International Journal of Climatology, 13(5), 533–546. https://doi.org/10.1002/joc.3370130505.

    Article  Google Scholar 

  • Bewket, W., & Conway, D. (2007). A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia. International Journal of Climatology, 27, 1467–1477. https://doi.org/10.1002/joc.1481.

    Article  Google Scholar 

  • Block, P. J. (2008). Mitigating the effects of hydrologic variability in Ethiopia: an assessment of investments in agricultural and transportation infrastructure, energy and hydroclimatic forecasting. CPWF Working Paper 01: The CGIAR Challenge Program on Water and Food, Colombo, p. 53.

  • Bonaccorso, B., Peres, D., Cancelliere, A., & Rossi, G. (2013). Large scale probabilistic drought characterization over Europe. Water Resource Management, 27(6), 1675–1692.

    Article  Google Scholar 

  • Burn, D. H., Sharif, M., & Zhang, K. (2010). Detection of trends in hydrological extremes for Canadian watersheds. Hydrological Processes, 24(13), 1781–1790. https://doi.org/10.1002/hyp.7625.

    Article  Google Scholar 

  • Chen, H., & Sun, J. (2015). Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. Journal of Climate, 28(13), 5430–5447.

    Article  Google Scholar 

  • Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65. https://doi.org/10.1002/wcc.81.

    Article  Google Scholar 

  • Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58.

    Article  Google Scholar 

  • Degefu, M. A., & Bewket, W. (2013). Trends and spatial patterns of drought incidence in the omoghibe river basin, Ethiopia. Geografiska Annaler: Series A, Physical Geography. https://doi.org/10.1111/geoa.12080.

    Article  Google Scholar 

  • Deressa, T. T., Hassan, R. M., Ringler, C. (2010) Perception of and adaptation to climate change by farmers in the Nile Basin of Ethiopia. Journal of Agricultural Science, (Climate Change and Agriculture Paper) 1–9.

  • Edossa, D. C., Babel, M. S., & Gupta, A. D. (2010). Drought analysis in the Awash river basin, Ethiopia. Water Resources Management, 24(7), 1441–1460. https://doi.org/10.1007/s11269-009-9508-0.

    Article  Google Scholar 

  • Edwards, D. C., McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple scales. Atmospheric Science Paper No. 634, May 1–30.

  • El Kenawy, A. M., Mc Cabe, M. F., Vicente Serrano, S. M., López Moreno, J. I., & Robaa, S. M. (2016). Changes in the frequency and severity of hydrological droughts over Ethiopia from. Cuadernos De Investigación Geográfica, 42(2), 145–156. https://doi.org/10.18172/cig.2925.

    Article  Google Scholar 

  • Ellis, A. W., Goodrich, G. B., & Garfin, G. M. (2010). A hydroclimatic index for examining patterns of drought in the Colorado River Basin. International Journal of Climatology, 30, 236–255. https://doi.org/10.1002/joc.1882.

    Article  Google Scholar 

  • FAO. (2014). Understanding the drought impact of El Niño on the global agricultural areas: an assessment using FAO’s Agricultural Stress Index (ASI). ISBN 978-92-5-108671-1.

  • Gebrehiwot, T., van der Veen, A., & Maathuis, B. (2011). Spatial and temporal assessment of drought in the northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 13(3), 309–321. https://doi.org/10.1016/j.jag.2010.12.002.

    Article  Google Scholar 

  • Hirsch, R. M., Alexander, R. B., & Smith, R. A. (1991). Selection of methods for the detection and estimation of trends in water quality. Water Resources Research, 27, 803–814.

    Article  Google Scholar 

  • Hirschi, M., Seneviratne, S. I., Alexandrov, V., Boberg, F., Boroneant, C., Christensen, O. B., et al. (2011). Observational evidence for soil-moisture impact on hot extremes in south eastern Europe. Nature Geoscience, 4(1), 17–21.

    Article  CAS  Google Scholar 

  • Hong, W., Michael, J. H., Albert, W., & Qi, H. (2001). An evaluation of the standardized precipitation index, the china-z index and the statistical z-score. International Journal of Climatology, 21, 745–758. https://doi.org/10.1002/joc.658.

    Article  Google Scholar 

  • Huang, S., Huang, Q., Chang, J., Chen, Y., Xing, L., & Xie, Y. (2014). Copulas-based drought evolution characteristics and risk evaluation in a typical arid and semi-arid region. Water Resource Management, 29(5), 1489–1503.

    Article  Google Scholar 

  • Ionita, M., Lohmann, G., Rimbu, N., Chelcea, S., & Dima, M. (2012). Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature. Climate Dynamics, 38(1–2), 363–377.

    Article  Google Scholar 

  • Ju, X. S., Yang, X. W., Chen, L. J., & Wang, Y. M. (1997). Research on determination of indices and division of regional flood/drought grades in China. Quarterly Journal of Applied Meteorology, 8(1), 26–33.

    Google Scholar 

  • Kandji, T. S., Verchot, L., & Mackensen, J. (2006). Climate change and variability in the Sahel region: Impacts and adaptation strategies in the agricultural sector. United Nations Environment Programme/World Agroforestry Centre Rep., 48 p. https://www.unep.org/Themes/Freshwater/Documents/pdf/ClimateChangeSahelCombine.pdf.

  • Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffin.

    Google Scholar 

  • Kendall, M. G., & Stuart, A. (1977). The advanced theory of statistics (pp. 400–401). London, High Wycombe: Charles Griffin & Company.

    Google Scholar 

  • Keyantash, J., & Dracup, J. (2002). The quantification of drought: An evaluation of drought indices. Bulletin of the American Meteorological Society, 83(8), 1167–1180.

    Article  Google Scholar 

  • Kreyling, J., Wana, D., & Beierkuhnlein, C. (2010). Potential consequences of climate warming for tropical plant species in high mountains of southern Ethiopia. Diversity and Distributions, 16, 593–605.

    Article  Google Scholar 

  • Li, X., He, B., Quan, X., Liao, Z., & Bai, X. (2015). Use of the standardized precipitation evapotranspiration index (SPEI) to characterize the drying trend in Southwest China from 1982–2012. Remote Sensing, 7, 10917–10937.

    Article  Google Scholar 

  • Little, P. D., Stone, M. P., Mogues, T., Castro, A. P., & Negatu, W. (2006). Moving in place: Drought and poverty dynamics in South Wollo, Ethiopia. Journal of Development Studies, 42(2), 200–225.

    Article  Google Scholar 

  • Livada, I., & Assimakopoulos, V. D. (2007). Spatial and temporal analysis of drought in Greece using the standardized precipitation index (SPI). Theoretical and Applied Climatology, 89, 143–153. https://doi.org/10.1007/s00704-005-0227-z.

    Article  Google Scholar 

  • Mahajan, D. R., & Dodamani, B. M. (2015). Trend analysis of drought events over Upper Krishna Basin in Maharashtra. Aquatic Procedia 4 (Icwrcoe): 1250/1257. https://doi.org/10.1016/j.aqpro.2015.02.163.

  • Manatsa, D. W., Chingombe, H., & Matsikwa, C. H. (2008). The superior influence of Darwin Sea level pressure anomalies over ENSO as a simple drought predictor for southern Africa. Theoretical and Applied Climatology, 92, 1–14. https://doi.org/10.1007/s00704-007-0315-3.

    Article  Google Scholar 

  • Mann, H. B. (1945). Non-parametric tests against trend. Econometrica, 13(3), 245–259.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Eighth conference on applied climatology (Vol. 17(22), pp. 179-184). Anaheim, CA: American Meteorological Society.

  • McSweeney, C., New, M., & Lizcano, G. (2010). UNDP climate change profile for Ethiopia. Retrieved on June 03, 2018. https://countryprofiles.geog.ox.ac.uk.

  • Meze-Hausken, E. (2000). Migration caused by climate change: How vulnerable are people in Dryland areas? A case-study in northern Ethiopia. Mitigation and Adaptation Strategies for Global Change, 5, 379–406.

    Article  Google Scholar 

  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1), 202–216.

    Article  Google Scholar 

  • Mohammed, Y., Fantaw, Y., Menfese, T., & Kindie, T. (2018). Meteorological drought assessment in north east highlands of Ethiopia. International Journal of Climate Change Strategies and Management, 10(1), 142–160. https://doi.org/10.1108/IJCCSM-12-2016-0179.

    Article  Google Scholar 

  • Morid, S., Smakhtinb, V., & Moghaddasi, M. (2006). Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology, 26(7), 971–985. https://doi.org/10.1002/joc.1264.

    Article  Google Scholar 

  • Mosaad, K. (2015). Forecasting of meteorological drought using hidden Markov model (case study: The upper Blue Nile river basin, Ethiopia). Ain Shams Engineering Journal, 7(1), 47–56.

    Google Scholar 

  • Oguntunde, P. G., Lischeid, G., Abiodun, B. J., & Dietrich, O. (2017). Analysis of long term dry and wet conditions over Nigeria. International Journal of Climatology, 37(9), 3577–3586. https://doi.org/10.1002/joc.4938.

    Article  Google Scholar 

  • Oloruntade, A. J., Mohammad, T. A., Ghazali, A. H., & Wayayok, A. (2017). Analysis of meteorological and hydrological droughts in the Niger South Basin, Nigeria. Global and Planetary Change, 155, 225–233. https://doi.org/10.1016/j.gloplacha.2017.05.002.

    Article  Google Scholar 

  • Petrow, T., & Merz, B. (2009). Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. Journal of Hydrology, 371(4), 129–141. https://doi.org/10.1016/j.jhydrol.2009.03.024.

    Article  Google Scholar 

  • Segele, Z. T., & Lamb, P. J. (2005). Characterization and variability of summer rainy season over Ethiopia. Meteorology and Atmospheric Physics, 89(1), 153–180.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389.

    Article  Google Scholar 

  • Shatanawi, K., Rahbeh, M., & Shatanawi, M. (2013). Characterizing, monitoring and forecasting of drought in Jordan River basin. Journal of Water Resource and Protection, 5(12), 1192–1202.

    Article  Google Scholar 

  • Sheffield, J, & Wood, E. F. (2011). Drought: Past problems and future scenarios. Routledge, 224.

  • Sheffield, J., Wood, E. F., Chaney, N., Guan, K., Sadri, S., Yuan, X., et al. (2014). A drought monitoring and forecasting system for Sub sahara African water resources and food security. Bulletin of the American Meteorological Society, 95(6), 861–882. https://doi.org/10.1175/BAMS-D-12-00124.1.

    Article  Google Scholar 

  • Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought over the past 60 years. Nature, 491, 435–438.

    Article  CAS  Google Scholar 

  • Tagel, G., Veen, A. V. D., & Maathuis, B. (2011). Spatial and temporal assessment of drought in the northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 13, 309–321.

    Article  Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.

    Article  Google Scholar 

  • Vicente Serrano, S. M., Begueria, S., Gimeno, L., Eklundh, L., Giuliani, G., Weston, D., et al. (2012). Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information system. Applied Geography, 34, 471486. https://doi.org/10.1016/j.apgeog.2012.02.001.

    Article  Google Scholar 

  • Vicente Serrano, S. M., Beguería, S., & López Moreno, J. I. (2010). A multi scalar drought index sensitive to global warming: the standardized rainfall evapotranspiration index SPEI. Journal of Climate, 23, 1696–1718.

    Article  Google Scholar 

  • Viste, E., Korecha, D., & Sorteberg, A. (2012). Recent drought and precipitation tendencies in Ethiopia. Theoretical and Applied Climatology, 112, 535–551.

    Article  Google Scholar 

  • Wang, X., Zhang, J., Shahid, S., Elmahdi, A., He, R., & Bao, Z. (2012). Water resources management strategy for adaptation to droughts in China. Mitigation and Adaptation Strategies for Global Change, 17(8), 923–937.

    Article  Google Scholar 

  • Wang, F. Q., Zheng, Z., Kang, P. P., & Wang, L. (2015). Applicability evaluation on the indexes of typical drought in Henan province. ChinaApplied Ecology and Environmental Research, 15(3), 253–262. https://doi.org/10.15666/aeer/1503_253262.

    Article  Google Scholar 

  • World Bank. (2006). IDA Countries and Exogenous Shocks. IDA Resource Mobilization: World Bank, Washington DC.

    Google Scholar 

  • World Meteorological Organization. (2012). Standardized Precipitation Index User Guide, in Svoboda, M., Hayes, M. and Wood, D. (Eds), (WMO-No. 1090), Geneva.

  • Yang, H., Yang, D., Hu, Q., & Lv, H. (2015). Spatial variability of the trends in climatic variables across China during 1961–2010. Theor Appl Climatol, 120, 773–783.

    Article  Google Scholar 

  • Yu, M., Li, Q., Hayes, M., Svoboda, M., & Heim, R. (2014). Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951 to 2010?. International Journal of Climatology, 34, 545–558.

    Article  CAS  Google Scholar 

  • Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann-Kendall and spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259, 254–271.

    Article  Google Scholar 

  • Zarei, A., Asadi, E., Ebrahimi, A., Jafary, M., Malekian, A., Tahmoures, M., et al. (2017). Comparison of meteorological indices for spatio-temporal analysis of drought in Chahrmahal-Bakhtiyari Province in Iran. Croatian Meteorological Journal, 52, 13–26.

    Google Scholar 

  • Zhang, Q., Qi, T., Singh, V., Chen, Y., & Xiao, M. (2015). Regional frequency analysis of droughts in china: A multivariate perspective. Water Resour Manag, 29(6), 1767–1787.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by key program granted by the National Key R&D Program of China (NO: 2017YFC0403506) Young Top-Notch Talent Support Program of National High-level Talents Special Support Plan and supported by Jiang Su Qing Lan. The authors are thankful to the National Meteorology Agency (NMA) of Ethiopia for providing station-based temperature and precipitation data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Wang.

Ethics declarations

Conflict of interest

No conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassaye, A.Y., Shao, G., Wang, X. et al. Quantification of drought severity change in Ethiopia during 1952–2017. Environ Dev Sustain 23, 5096–5121 (2021). https://doi.org/10.1007/s10668-020-00805-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00805-y

Keywords

Navigation