Skip to main content

Advertisement

Log in

Challenges of the lumber production in the Amazon region: relation between sustainability of sawmills, process yield and logs quality

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

There has been an increasing global demand for more sustainable production systems, especially in what concerns goods produced from natural tropical forests. The lumber industry in the Brazilian Amazon region produces a significant volume of lumber, and as a consequence of frequent non-optimal procedures, considerable amounts of waste are generated. In order to optimize the timber production and to minimize the environmental damage associated with low yields of sawmills, two features are indispensable: the lumber yield and the quality of the logs. The aim of this research was to analyze the wood quality and lumber yield of logs of tree species harvested from natural stands in the Amazon rainforest. A total of 120 logs from 21 tree species were harvested from natural stands in the state of Pará, Brazil, and analyzed for wood quality. Out of these, 60 logs were evaluated for lumber yield. The most common defects found in the logs were flattening, surface cracks, and eccentricity of the pith. By means of the principal component analysis, the Mezilaurus itauba, Protium decandrum, and Caryocar villosum species stood out. The average lumber yield was 45%. The Bowdichia nitida and C. villosum species presented the highest yield values (average of 63%). There was a trend of correlation between the lumber yield and the quality of the logs. Based on the methodology used to analyze the quality of the logs, inferences can be made on the yield of the logging and, consequently, the sustainability of the timber industries in the Brazilian Amazon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adhikari, S., & Ozarska, B. (2018). Minimizing environmental impacts of timber products through the production process “From Sawmill to Final Products”. Environmental Systems Research, 7(6), 1–15.

    Google Scholar 

  • Andrade, V. H. F., Machado, S. A. M., Figueiredo Filho, A., Botosso, P. C., Miranda, B. P., & Schöngart, J. (2019). Growth models for two commercial tree species in upland forests of the Southern Brazilian Amazon. Forest Ecology and Management, 438, 215–223.

    Google Scholar 

  • Asner, G. P., Keller, M., Lentini, M., Merry, F., & Souza Junior, C. (2009). Selective logging and its relation to deforestation. In Amazonia and Global Change, Geophysical Monograph Series, (Vol. 186, pp. 25–42). Washington, DC: American Geophysical Union.

  • Associação Brasileira da Indústria de Madeira Processada Mecanicamente—ABIMCI. (2016). Estudo Setorial 2016: Ano base 2015. Curitiba: ABIMCI. (in Portuguese).

    Google Scholar 

  • Biasi, C. P., & Rocha, M. P. (2001). Yield in sawnwood and quantification of residues for three tropical species. Floresta, 37(1), 95–108.

    Google Scholar 

  • Bila, N. F., Iwakiri, S., Trianoski, R., & Prata, J. G. (2016). Evaluation of quality of the bonded joints of six species of Amazonian tropical timbers. Floresta, 46(4), 455–464.

    Google Scholar 

  • Bonato Junior, A. I., Rocha, M. P., Juizo, C. G. F., & Klitzke, R. J. (2017). Effect of saw pattern and diametric grades on the yield in lumber of Araucaria angustifolia. Floresta e Ambiente, 24, e00100414.

    Google Scholar 

  • Boschetti, W. T. N., Paes, J. B., Vidaurre, G. B., Arantes, M. D. C., & Leite, F. P. (2015). Dendrometric parameters and eccentricity of the pith in leaning eucalyptus trees. Scientia Forestalis, 43(108), 781–789.

    Google Scholar 

  • Buehlmann, U., & Thomas, R. E. (2002). Impact of human error on lumber yield in rough mills. Robotics and Computer-Integrated Manufacturing, 18(3–4), 197–203.

    Google Scholar 

  • Carrasco, E. V. M., & Mantilla, J. N. R. (2016). Influence of slope of grain in shear strength of wood. Ciência Florestal, 26(2), 535–543.

    Google Scholar 

  • Chambers, J. Q., Higuchi, N., & Schimel, J. P. (1998). Ancient trees in Amazonia. Nature, 391, 135–136.

    CAS  Google Scholar 

  • Chiniforush, A. A., Akbarnezhad, A., Valipour, H., & Jianzhuangc, X. (2018). Energy implications of using steel-timber composite (STC) elements in buildings. Energy and Buildings, 176, 203–215.

    Google Scholar 

  • CONAMA. Conselho Nacional do Meio Ambiente. Resolução nº 474 de 06/04/2016. Diário Oficial da União de 02/05/2016, Seção 1, pp. 74–75. (in Portuguese).

  • Couto, A. M., Protásio, T. P., Trugilho, P. F., Neves, T. A., & Sá, V. A. (2013). Multivariate analysis applied to evaluation of Eucalyptus clones for bioenergy production. Cerne, 19(4), 525–533.

    Google Scholar 

  • Danielli, F. E., Gimenez, O. B., Oliveira, C. K. A., Santos, J., & Higuchi, N. (2016). Yield modeling in sawing logs of Manilkara spp. (Sapotaceae) in sawmill in the state of Roraima, Brazil. Scientia Forestalis, 44(111), 641–651.

    Google Scholar 

  • Dobner Junior, M., Higa, A. R., & Rocha, M. P. (2012). Sawmill yield of Pinus taeda logs: Large assortments. Floresta e Ambiente, 19(3), 385–392.

    Google Scholar 

  • Eshun, J. F., Potting, J., & Leemans, R. (2012). Wood waste minimization in the timber sector of Ghana: A systems approach to reduce environmental impact. Journal Clean Production, 26, 67–78.

    Google Scholar 

  • Ferreira, D. F. (2008). Estatística Multivariada (1st ed.). Lavras: UFLA. (in Portuguese).

    Google Scholar 

  • Ferreira, S., Lima, J. T., Rosado, S. C. S., & Trugilho, P. F. (2004). Influence of tangential break down methods on the yield and on the quality of Eucalyptus spp sawn timber. Cerne, 10(1), 10–21.

    Google Scholar 

  • Fortini, L. B. (2019). Integrated models show a transient opportunity for sustainable management by tropical forest dwellers. Forest Ecology and Management, 438, 233–242.

    Google Scholar 

  • Fortini, L. B., & Carter, D. R. (2014). The economic viability of smallholder timber production under expanding açaí palm production in the Amazon Estuary. Journal of Forest Economics, 20(3), 223–235.

    Google Scholar 

  • Fuentealba, S., Pradenas, L., Linfati, R., & Ferland, J. A. (2019). Forest harvest and sawmills: An integrated tactical planning model. Computers and Electronics in Agriculture, 156, 275–281.

    Google Scholar 

  • Garcia, F. M., Manfio, D. R., Sansígolo, C. A., & Magalhães, P. A. D. (2012). Yield of itaúba (Mezilaurus itauba) and tauarí (Couratari guianensis) logs sawmill according to log quality classification. Floresta e Ambiente, 19(4), 468–474.

    Google Scholar 

  • Gerwing, J., Vidal, E., Verìssimo, A., & Uhl, C. (2000). O rendimento no processamento de madeira no estado do Pará. Série Amazônica Série Amazônica. Belém: Imazon. (in Portuguese).

    Google Scholar 

  • González, I., Déjean, S. T. (2012). Canonical correlation analysis. R package version 1.2. Retrieved April 9, 2018, from https://CRAN.R-project.org/package=CCA.

  • Grosser, D. (1980). Defeitos de madeira. Fupef: Curitiba. (in Portuguese).

    Google Scholar 

  • Gustavsson, L., Holmberg, J., Dornburg, V., Sathre, R., Eggers, T., Mahapatra, K., et al. (2007). Using biomass for climate change mitigation and oil use reduction. Energy Policy, 35, 5671–5691.

    Google Scholar 

  • Gustavsson, L., & Sathre, R. (2006). Variability in energy and carbon dioxide balances of wood and concrete building materials. Building and Environment, 41(7), 940–951.

    Google Scholar 

  • Instituto Brasileiro de Desenvolvimento Florestal—IBDF. (1984). Norma para medição e classificação de toras de madeiras de folhosas. Brasília: Brasiliana. (in Portuguese).

    Google Scholar 

  • International Tropical Timber Organization—ITTO. (2017). Biennial review and assessment of the world timber situation (2015–2016). Yokohama: Division of Trade and Industry, ITTO.

    Google Scholar 

  • Kang, W., & Lee, N. H. (2004). Relationship between radial variations in shrinkage and drying defects of tree disks. Journal of Wood Science, 50(3), 209–216.

    Google Scholar 

  • Kayo, C., Noda, R., Sasaki, T., & Takaoku, S. (2015). Carbon balance in the life cycle of wood: Targeting a timber check dam. Journal of Wood Science, 61, 70–80.

    CAS  Google Scholar 

  • Knight, L., Huff, M., Stockhausen, J. I., & Ross, R. J. (2005). Comparing energy use and environmental emissions of reinforced wood doors and steel doors. Forest Products Journal, 55(6), 48–52.

    Google Scholar 

  • Kollmann, F. F. P., & Côté, W. A. (1968). Principles of wood science and technology. New York: Springer.

    Google Scholar 

  • Li, C., Huang, S., Barclay, H., & Sidders, D. (2016). Modeling lumber yield of white spruce in Alberta, Canada: A comparative approach. Journal of Forest Research, 21(6), 271–279.

    CAS  Google Scholar 

  • Lima, R. B., Ferreira, R. L. C., Silva, J. A. A., Guedes, M. C., Oliveira, C. P., Silva, D. A. S., et al. (2019). Lumber volume modeling of Amazon Brazilian species. Journal of Sustainable Forestry, 38(3), 262–274.

    Google Scholar 

  • Lima, R. B., Ferreira, R. L. C., Silva, J. A. A., Guedes, M. C., Silva, D. A. S., Oliveira, C. P., et al. (2020). Effect of species and log diameter on the volumetric yield of lumber in northern Brazilian Amazonia: Preliminary results. Journal of Sustainable Forestry, 39(3), 283–299.

    Google Scholar 

  • Lipscomb, M., & Prabakaran, N. (2020). Property rights and deforestation: Evidence from the Terra Legal land reform in the Brazilian Amazon. World Development, 129, 104854.

    Google Scholar 

  • Lobão, M. S., Chagas, M. P., Costa, D. S. P., Ferreira, A. T. B., Sette Jr, C. R., Carvalho, I. L., et al. (2010). Grouping of forest species by similarity of physical-anatomical characteristics and uses of wood. Cerne, 16, 97–105.

    Google Scholar 

  • Lundahl, C. G., & Grӧnlund, A. (2010). Increased yield in sawmills by applying alternate rotation and lateral positioning. Forest Products Journal, 60(4), 331–338.

    Google Scholar 

  • Marchesan, R., Loiola, P. L., Juizo, C. G. F., França, M. C., Rocha, M. P., & Klitzke, R. J. (2018). Yield and quality of lumber from three Amazonian species. Brazilian Journal of Wood Science, 9(3), 143–151.

    Google Scholar 

  • Melo, R. R., Dacroce, J. M. F., Rodolfo Junior, F., Lisboa, G. S., & França, L. C. J. (2019). Lumber yield of four native forest species of the Amazon region. Floresta e Ambiente, 26(1), e20160311.

    Google Scholar 

  • Melo, R. R., Rocha, M. J., Rodolfo Junior, F., & Stangerlin, D. M. (2016). Influence of diameter class on lumber yielding of Qualea sp. Pesquisa Florestal Brasileira, 36(88), 393–398.

    Google Scholar 

  • Mendoza, Z. M. S. H., Borges, P. H. M., Morais, P. H. M., & Elias, M. P. S. (2019). Use of beta regression to estimate the volumetric yield coefficient in logs of native species of the legal Amazon. Nativa, 7(3), 323–329.

    Google Scholar 

  • Mingoti, S. A. (2005). Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Belo Horizonte: UFMG. (in Portuguese).

    Google Scholar 

  • Monteiro, T. C., Lima, J. T., Silva, J. R. M., Trugilho, P. F., & Barauna, E. E. P. (2017). Energy balance in sawing Eucalyptus grandis logs. BioResources, 12(3), 5790–5800.

    CAS  Google Scholar 

  • Moutinho, V. H. P., Couto, A. M., Lima, J. T., Aguiar, O. J. R., & Nogueira, M. O. G. (2011). Energetic characterization of Matá-Matá wood from the Brazilian rainforest (Eschweilera Mart Ex Dc). Scientia Forestalis, 39(92), 457–461.

    Google Scholar 

  • Nascimento, T. M., Monteiro, T. C., Barauna, E. E. P., Moulin, J. C., & Azevedo, A. M. (2019). Drying influence on the development of cracks in Eucalyptus logs. BioResources, 14(1), 220–233.

    Google Scholar 

  • Nassur, O. A. C., Rosado, L. R., Rosado, S. C. S., & Carvalho, P. M. (2013). Variations in log quality of eighteen years old Toona ciliata M. Roem. Cerne, 19(1), 43–49.

    Google Scholar 

  • Numazawa, C. T. D., Numazawa, S., Pacca, S., & John, V. M. (2017). Logging residues and CO2 of Brazilian Amazon timber: Two case studies of forest harvesting. Resources, Conservation and Recycling, 122, 280–285.

    Google Scholar 

  • Packalen, T., Kärkkäinen, L., & Toppinen, A. (2017). The future operating environment of the finnish sawmill industry in an era of climate change mitigation policies. Forest Policy and Economics, 82, 30–40.

    Google Scholar 

  • Popadić, R., Šoškić, B., Milić, G., Todorović, N., & Furtula, M. (2014). Influence of the sawing method on yield of beech logs with red heartwood. Drvna Industrija, 65(1), 35–42.

    Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.4.3. Retrieved July 30, 2018, from https://www.R-project.org/.

  • Reis, P. C. M. R., Souza, A. L., Reis, L. P., Carvalho, A. M. M. L., Mazzei, L., Reis, A. R. S., et al. (2019). Clustering of Amazon wood species based on physical and mechanical properties. Ciência Florestal, 29(1), 336–346.

    Google Scholar 

  • Ribeiro, R. B. S., Gama, J. R. V., & Melo, L. O. (2014). Sectional analysis for volume determination and selection of volume equations for the Tapajos Nacional Forest. Cerne, 20(4), 605–612.

    Google Scholar 

  • Santos, M. F., Gama, J. R. V., Figueiredo Filho, A. F., Costa, D. L., Retslaff, F. A. S., Silva-Ribeiro, R. B., et al. (2019). Conicity and yield for lumber from commercial species from the Amazon. Cerne, 25(4), 439–450.

    Google Scholar 

  • Sears, R. R., Padoch, C., & Pinedo-Vasquez, M. (2007). Amazon Forestry transformed: integrating knowledge for smallholder timber management in Eastern Brazil. Human Ecology, 35, 697–707.

    Google Scholar 

  • Sousa, K. F. D., Detlefsen, G., Virginio Filho, E. M., Tobar, D., & Casanoves, F. (2016). Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agroforestry Systems, 90, 207–218.

    Google Scholar 

  • Sousa, W. C. S., Barbosa, L. J., Soares, A. A. V., Goulart, S. L., & Protásio, T. P. (2020). Wood colorimetry for the characterization of Amazonian tree species: A subsidy for a more efficient classification. Cerne, 25(4), 451–462.

    Google Scholar 

  • Stragliotto, M. C., Oliviera, A. C., Pereira, B. L. C., & Freitas, J. M. (2019). Yield in sawn wood and residue utilization of Qualea paraensis Ducke and Erisma uncinatum Warm. Floresta, 49(2), 257–266.

    Google Scholar 

  • Tuset, R., Duran, F., Berterreche, A., Marius, N., & Daniluk, G. (2007). Manual de Maderas Comerciales, Equipos y Proceso de Utilización: Aserrado de Maderas. 1. v. Montevideo: Hemisferio-Sur.

    Google Scholar 

  • Vital, B. R. (2008). Planejamento e Operação de Serrarias (1st ed.). Viçosa: UFV. (in Portuguese).

    Google Scholar 

  • Waldhoff, P., & Vidal, E. (2015). Community loggers attempting to legalize traditional timber harvesting in the Brazilian Amazon: An endless path. Forest Policy and Economics, 50, 311–318.

    Google Scholar 

  • Wery, J., Gaudreault, J., Thomas, A., & Marier, P. (2018). Simulation-optimisation based framework for Sales and Operations Planning taking into account new products opportunities in a co-production context. Forest Ecology and Management, 94, 41–51.

    Google Scholar 

  • Williston, E. M. (1976). Lumber manufacturing: the design and operation of sawmills and planer mills (2nd ed.). San Francisco: M. Freeman.

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the National Council for Scientific and Technological Development (CNPq) in Brazil (process 306793/2019-9). The authors are grateful for the comments and suggestions presented by the reviewers during the review process, which contributed to improve the quality of the paper and, COOPMASP (Cooperativa da Indústria Moveleira e Serradores de Parauapebas—Brazil) by provide the raw material. We would also like to thank Michael James Stablein of the University of Illinois Urbana-Champaign for his translation services and review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago de Paula Protásio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Luz, E., Soares, Á.A.V., Goulart, S.L. et al. Challenges of the lumber production in the Amazon region: relation between sustainability of sawmills, process yield and logs quality. Environ Dev Sustain 23, 4924–4948 (2021). https://doi.org/10.1007/s10668-020-00797-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00797-9

Keywords

Navigation