Skip to main content

Advertisement

Log in

Evaluating long-term variability in precipitation and temperature in eastern plateau region, India, and its impact on urban environment

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In the present study, the long-term variability in precipitation and temperatures was analyzed in relation to the urban environment of Ranchi Metropolitan Region, eastern plateau region, India. The daily meteorological observations of 5 decades (1961–2010) indicated an increasing mean temperature (0.4 °C) and decreasing cumulative precipitation in the Ranchi, capital region of the state Jharkhand. The results exhibited a declining precipitation patterns in the recent decade as compared to the earlier 4 decades. The high daily monsoon rainfall intensity with low cumulative precipitation can be observed during post-2000 periods, which indicate a highly erratic nature of precipitation in the region. Temporal census data demonstrated that the Ranchi urban region faced enormous proliferation in the human population (21 times) during the period 1927–2010 and thereby induced the extensive alteration in land use/land cover and rapid built-up expansion (> 5 times) as evidenced by the temporal satellite-based observations. The increasing annual per capita land consumption (361.50%) together with annual per capita loss of heat sink zones (96.3% during 1927–2010) and high influx of vehicles (563% during 1997–2010) influenced the local and regional climatic variable in the region. The results indicate that the rapid and haphazard urban sprawl in the last few decades and increase in built-up and impervious surface largely contributed in increasing the land surface temperature (34–42 °C) as compared to the rural environment (30–38 °C), which perhaps could be the region for the changes in climate and weather pattern of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

CMR:

Cumulative monsoon rainfall/precipitation

TRD:

Total number of rainfall days

MJJASO:

May, June, July, August, September and October

NRD:

Number of rainy days (days with more than 20 mm of precipitation)

MDRI:

Mean daily rainfall intensity

CMR:

Cumulative monsoon precipitation

AMT:

Annual mean temperature

T max :

Annual maximum temperature

T min :

Annual minimum temperature

S :

Mann–Kendall trend

Q :

Sen’s estimator of slope

NWD:

Number of warm days (days with maximum temperature of more than 35 °C)

DCR:

Decadal cumulative rainfall

DMT:

Decadal mean temperature

LANDSAT:

Land satellite

AAMT:

Average annual mean temperature

References

  • Barnsley, M. J., & Barr, S. L. (1997). A graph based structural pattern recognition system to infer urban land-use from fine spatial resolution land-cover data. Computers, Environment and Urban Systems, 21(3/4), 209–225.

    Article  Google Scholar 

  • Blake, R., Grimm, A., Ichinose, T., Horton, R., Gaffin, S., Jiong, S., et al. (2011). Urban climate: Processes, trends, and projections. In C. Rosenzweig, W. D. Solecki, S. A. Hammer, & S. Mehrotra (Eds.), Climate change and cities: First assessment report of the urban climate change research network (pp. 43–81). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Boadh, R., Satyanarayana, A. N. V., & Rama Krishna, T. V. B. P. S. (2014). Assessment of dispersion of oxide of nitrogen using AERMOD over a tropical industrial region. International Journal of Computer Applications, 90(11), 43–50.

    Article  Google Scholar 

  • Cai, M., Li, H., & Kalnay, E. (2004). Impact of land-use change and urbanization on climate. In Proceedings of 84th annual meeting of American Meteorological Society, J5.2, Seattle, Washington, January 11–15.

  • Catalan, B., Sauri, D., & Pere, S. (2008). Urban sprawl in the Mediterranean? Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landscape and Urban Planning, 85, 174–184.

    Article  Google Scholar 

  • Census of India. (1921). Primary census abstract. New Delhi: Office of the Registrar General.

    Google Scholar 

  • Census of India. (1931). Primary census abstract. New Delhi: Office of the Registrar General.

    Google Scholar 

  • Census of India. (1991). Primary census abstract. New Delhi: Office of the Registrar General.

    Google Scholar 

  • Census of India. (2001). Primary census abstract. New Delhi: Office of the Registrar General.

    Google Scholar 

  • Census of India. (2011). Primary census abstract. New Delhi: Office of the Registrar General.

    Google Scholar 

  • Changnon, S. A. (1968). The LaPorte weather anomaly—Fact or fiction? Bulletin of the American Meteorological Society, 49, 4–11.

    Article  Google Scholar 

  • Changnon, S. A., Shealy, R. T., & Scott, R. W. (1991). Precipitation changes in fall, winter, and spring caused by St. Louis. Journal of Applied Meteorology, 30, 126–134.

    Article  Google Scholar 

  • Christen, A., & Vogt, R. (2004). Energy and radiation balance of a central European city. International Journal of Climatology, 24, 1395–1421. https://doi.org/10.1002/joc.1074.

    Article  Google Scholar 

  • Cotton, W. R., & Pielke, R. A. (2007). Human impacts on weather and climate. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Coutts, A. M., Beringer, J., & Tapper, N. J. (2007). Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. Journal of Applied Meteorology and Climatology, 46, 477–493. https://doi.org/10.1175/JAM2462.1.

    Article  Google Scholar 

  • Dijk, A., Bruijnzeel, L. A., & Eisma, E. H. (2003). A methodology to study rain splash and wash processes under natural ranfall. Hydrological Processes, 17, 153–167.

    Article  Google Scholar 

  • District Transport Office (DTO). (2010). Directory of vehicular registration. Ranchi: Government of Jharkhand.

    Google Scholar 

  • Gallo, K. P., & Owen, T. W. (1999). Satellite-based adjustments for urban heat island temperature bias. Journal of Applied Meteorology, 38, 806–813.

    Article  Google Scholar 

  • Golden, J. S. (2004). The built environment induced urban heat island effect in rapidly urbanizing arid regions—A sustainable urban engineering complexity. Environmental Sciences, 1(4), 321–349.

    Article  Google Scholar 

  • Hand, L., & Shepherd, J. M. (2009). An investigation of warm season spatial rainfall variability in Oklahoma City: Possible linkages to urbanization and prevailing wind. Journal of Applied Meteorology and Climatology, 48, 251–269.

    Article  Google Scholar 

  • Harman, I. N., & Belcher, S. E. (2006). The surface energy balance and boundary layer over urban street canyons. Quarterly Journal of the Royal Meteorological Society, 132, 2749–2768. https://doi.org/10.1256/qj.05.185.

    Article  Google Scholar 

  • Hart, M. A., & Sailor, D. J. (2009). Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theoretical and Applied Climatology, 95, 397–406. https://doi.org/10.1007/s00704-008-0017-5.

    Article  Google Scholar 

  • Huff, F. A., & Changnon, S. A. (1972). Climatological assessment of urban effects on precipitation at St. Louis. Journal of Applied Meteorology, 11, 823–842.

    Article  Google Scholar 

  • Inoue, T., & Kimura, F. (2004). Urban effects on low level clouds around the Tokyo metropolitan area on clear summer days. Geophysical Research Letters, 31, L05103. https://doi.org/10.1029/2003GL018908.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2013). Climate Change 2013: The physical science basis. In: T. F. Stocker, D. Qin, G-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 1535). Cambridge University Press. http://www.climatechange2013.org/.

  • Jacovides, C. P., Varotsos, C., Kaltsounides, N. A., Petrakis, M., & Lalas, D. P. (1994). Atmospheric turbidity parameters in the highly polluted site of Athens basin. Renewable Energy, 4, 465–470.

    Article  Google Scholar 

  • Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423, 528–531.

    Article  CAS  Google Scholar 

  • Karl, T. R., & Trenberth, K. E. (2003). Modern global climate change. Science, 302(5651), 1719–1723.

    Article  CAS  Google Scholar 

  • Kharol, S. K., Kaskaoutis, D. G., Sharma, A. R., & Singh, R. P. (2013). Long-term (1951–2007) rainfall trends around six Indian cities: Current state, meteorological, and urban dynamics. Advances in Meteorology., 572954, 1–15. https://doi.org/10.1155/2013/572954.

    Article  Google Scholar 

  • Kishtawal, C. M., Niyogi, D., Tewari, M., Pielke, R. A., Sr., & Shepherd, J. M. (2010). Urbanization signature in the observed heavy rainfall climatology over India. International Journal of Climatology, 30(13), 1908–1916.

    Article  Google Scholar 

  • Kumar, A., & Pandey, A. C. (2013). Spatio-temporal assessment of urban environmental conditions in Ranchi township using remote sensing and GIS techniques. International Journal of Urban Sciences, 17(1), 117–141.

    Article  Google Scholar 

  • Kumar, A., & Pandey, A. C. (2016). Geoinformatics based groundwater potential assessment in hard rock terrain of Ranchi urban agglomeration, Jharkhand (India) using MCDM-AHP techniques. Groundwater for Sustainable Development., 2–3(27), 41. https://doi.org/10.1016/j.gsd.2016.05.001.

    Article  Google Scholar 

  • Kumar, A., Pandey, A. C., Hoda, N., & Jeyaseelan, A. T. (2011a). Evaluation of urban sprawl pattern in tribal dominated cities of Jharkhand state, India. International Journal of Remote Sensing, 32(22), 7651–7675.

    Article  Google Scholar 

  • Kumar, A., Pandey, A. C., Hoda, N., & Jeyaseelan, A. T. (2011b). Evaluating the long-term urban expansion of Ranchi township, India using geospatial technology. Journal of Indian Society of Remote Sensing, 39(2), 213–224.

    Article  Google Scholar 

  • Landsberg, H. E. (1970). Man-made climate changes. Science, 170, 1265–1274.

    Article  CAS  Google Scholar 

  • Lei, M., Niyogi, D., Kishtawal, C., Pielke, R. A., Sr., Beltrán-Przekurat, A., Nobis, T., et al. (2008). Effect of explicit urban land surface representation on the simulation of the 26th July 2005 heavy rain event over Mumbai, India. Atmospheric Chemistry and Physics, 8, 5975–5995.

    Article  CAS  Google Scholar 

  • Lo, C. P. (1997). Application of LANDSAT Thematic Mapper Data for quality of life assessment in an urban environment. Computers, Environment and Urban Systems, 21, 259–276.

    Article  Google Scholar 

  • Mahmood, R., Pielke, R. A., Sr., Hubbard, K. G., Niyogi, D., Bonan, G., Lawrence, P., et al. (2010). Impacts of land use land cover change on climate and future research priorities. Bulletin of American Meteorological Society, 91, 37–46.

    Article  Google Scholar 

  • Manteghi, G., Limit, H. B., & Remaz, D. (2015). Water bodies an urban microclimate: A review. Modern Applied Science, 9(6), 1–12.

    Article  Google Scholar 

  • Marshall, C. H., Pielke, R. A., Sr., Steyaert, L. T., & Willard, D. A. (2004). The impact of anthropogenic land-cover change on the Florida Peninsula sea breezes and warm season sensible weather. Monthly Weather Review, 132, 28–52.

    Article  Google Scholar 

  • Mesev, V. (1998). The use of census data in image classification. Photogrammetric Engineering and Remote Sensing, 64, 431–438.

    Google Scholar 

  • Mitra, C., Shepherd, M. J., & Jordan, T. (2012). On the relationship between the premonsoonal rainfall climatology and urban land cover dynamics in Kolkata city, India. International Journal of Climatology, 32(9), 1443–1454.

    Article  Google Scholar 

  • Mote, T. L., Lacke, M. C., & Shepherd, J. M. (2007). Radar signatures of the urban effect on precipitation distribution: a case study for Atlanta, Georgia. Geophysical Research Letters, 34, L20710. https://doi.org/10.1029/2007GL031903.

    Article  Google Scholar 

  • Nenwiini, S. C. (2010). Climate classification of Vhembe district in Limpopo province of South Africa using multivariate statistical analysis (MVSA). Honours Dissertation, Unpublished, School of Environmental Sciences: University of Venda, South Africa.

  • Niyogi, D., Holt, T., Zhong, S., Pyle, P. C., & Basara, J. (2006). Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the Southern Great Plains. Journal of Geophysical Research, 111, D19107. https://doi.org/10.1029/2005JD006746.

    Article  Google Scholar 

  • Nuñez, M. N., Ciapessoni, H. H., Rolla, A., Kalnay, E., & Cai, M. (2008). Impact of land use and precipitation changes on surface temperature trends in Argentina. Journal of Geophysical Research, 113(D06111), 1–11. https://doi.org/10.1029/2007JD008638.

    Google Scholar 

  • Ohashi, Y., Genchi, Y., & Kondo, H. (2007). Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. Journal of Applied Meteorology and Climatology, 46, 66–81.

    Article  Google Scholar 

  • Owen, T. W., Gallo, K. P., Elvidge, C. D., & Baugh, K. E. (1998). Using DMSP-OLS light frequency data to categorize urban environments associated with US climate observing stations. International Journal of Remote Sensing, 19, 3451–3456.

    Article  Google Scholar 

  • Pandey, A. C., & Kumar, A. (2015). Spatio-temporal variability of surface water quality of fresh water resources in Ranchi urban agglomeration, India using geospatial techniques. Applied Water Science, 5(1), 13–26. https://doi.org/10.1007/s13201-014-0165-y.

    Article  Google Scholar 

  • Pandey, S. (2011). Quantitative approaches of study of meteorological parameters for drought assessment in Jharkhand state. Unpublished Ph.D. thesis, Birla Institute of Technology: Mesra, India.

  • Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20, 011–2026.

    Article  Google Scholar 

  • Pearlmutter, D., Krüger, E. L., & Berliner, P. (2009). The role of evaporation in the energy balance of an open-air scaled urban surface. International Journal of Climatology, 29, 911–920. https://doi.org/10.1002/joc.1752.

    Article  Google Scholar 

  • Pielke, R. A., Sr., Marland, G., Betts, R. A., Chase, T. N., Eastman, J. L., Niles, J. O., et al. (2002). The influence of land-use change and landscape dynamics on the climate system: Relevance to climate change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society, London. A Special Theme Issue, 360, 1705–1719.

    Article  CAS  Google Scholar 

  • Saran, S. (2008). Drought in Jharkhand: Nature, impact and management in drought in India: challenges and initiatives. In Poorest Areas Civil Society (PACS) programme 2001–2008 (pp. 30–36). Retrieved June 22, 2015, from https://www.empowerpoor.org/downloads/drought1.pdf.

  • Satterthwaite, D. (2007). Climate change and urbanization: effects and implications for urban governance. New York: UN/POP/EGM-URB/2008/16: Population Division, Department of Economic and Social Affairs, United Nations Secretariat. Retrieved July 12, 2015, from https://www.un.org/esa/population/meetings/EGM_PopDist/P16_Satterthwaite.pdf.

  • Shepherd, J. M., & Burian, S. J. (2003). Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interactions, 7, 1–17.

    Article  Google Scholar 

  • Shepherd, J. M., Carter, W. M., Manyin, M., Messen, D., & Burian, S. (2010). The impact of urbanization on current and future coastal precipitation: A case study for Houston. Environment and Planning B; Planning and Design, 37, 284–304. https://doi.org/10.1068/b34102t.

    Article  Google Scholar 

  • Shepherd, J. M., Pierce, H., & Negri, A. J. (2002). Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. Journal of Applied Meteorology, 41, 689–701.

    Article  Google Scholar 

  • Stathopoulos, T. (2006). Pedestrian level winds and outdoor human comfort. Journal of Wind Engineering and Industrial Aerodynamics, 94(11), 769–780. https://doi.org/10.1016/j.jweia.2006.06.011.

    Article  Google Scholar 

  • Stone, B., & Norman, J. M. (2006). Land use planning and surface heat island formation: A parcel-based radiation flux approach. Atmospheric Environment, 40, 3561–3573. https://doi.org/10.1016/j.atmosenv.2006.01.015.

    Article  CAS  Google Scholar 

  • Sutton, P. C. (2003). A scale-adjusted measure of ‘‘Urban sprawl’’ using nighttime satellite imagery. Remote Sensing of Environment, 86, 353–369.

    Article  Google Scholar 

  • Snyder, W. C., Wan, Z., Zhang, Y., & Feng, Y. Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal Of Remote Sensing, 19(14), 2753–2774.

    Article  Google Scholar 

  • United Nations. (2006). World urbanization prospects: The 2005 revision. New York: UN. Retrieved August 14, 2015, from https://www.un.org/esa/population/publications/WUP2005/2005WUPHighlightsFinalReport.pdf.

  • United Nations Population Division (UNPD). (2014). World urban population. Retrieved June 22, 2015, from https://esa.un.org/unpd/wup/CD-ROM/Default.aspx.

  • Voogt, J. A. (2007). How cities alter weather and climate. In A. Strahler & A. Strahler (Eds.), Physical geography—science and systems of human environment (2nd ed.). New Delhi: Wiley.

    Google Scholar 

  • Wang, G., Liu, J. L., Kubota, J., & Chen, L. (2009). Effects of land-use changes on hydrological processes in the middle basin of the Heihe River, Northwest China. Hydrological Processes, 21, 1370–1382.

    Article  CAS  Google Scholar 

  • Wentz, E. A., Nelson, D., Rahman, A., Stefanov, W. L., & Roy, S. S. (2008). Expert system classification of urban land use/cover for Delhi, India. International Journal of Remote Sensing, 29(15), 4405–4427.

    Article  Google Scholar 

  • Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106, 375–386.

    Article  Google Scholar 

Download references

Acknowledgements

Authors express gratitude to the anonymous reviewers for their valuable inputs, Birsa Agricultural University (BAU), Ranchi, for providing the daily data of meteorological parameters (precipitation and temperature) and to United States Geological Survey (USGS) for the open series of LANDSAT satellite datasets.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the idea and hypothesis development, method development, data processing, analyses, interpretation of the results and writing the manuscript.

Corresponding author

Correspondence to Arvind Chandra Pandey.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests in the said paper. There are no funding sponsors for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Pandey, A.C., Pandey, S. et al. Evaluating long-term variability in precipitation and temperature in eastern plateau region, India, and its impact on urban environment. Environ Dev Sustain 23, 3731–3761 (2021). https://doi.org/10.1007/s10668-020-00742-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00742-w

Keywords

Navigation