Skip to main content

Advertisement

Log in

Appraising the triple bottom line utility of sustainable project portfolio selection using a novel multi-criteria house of portfolio

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Sustainable development is one of the most fundamental scientific and practical fields of development in modern societies which its importance is more comprehensible in underdevelopment countries. Project management methodologies have been incorporated sustainable criteria to enhance the quality of their scope. The purpose of this research is to design an effective three-stage novel combination approach to estimate the sustainability utility of projects based on the sustainable principles and the ranking of projects through a novel multi-criteria house of portfolio in analytical network process (ANP) and quality function deployment (QFD) approaches. In the first step, using Sustainable Balanced Scorecard, key sustainability indicators are identified for ranking projects; then, using the QFD-ANP combination approach, identifying the relationships between the indicators, determining their significance and ranking projects are being implemented. Finally, the estimation of the sustainability utility function of reference projects is made according to the ranking of the projects from the QFD-ANP stage and using the UTASTAR method. The results of this research, in addition to identifying key indicators of sustainable development and classifying them in the form of Sustainable Balanced Scorecard, contain a prioritization pattern to select sustainable projects for current and future projects in an automotive company.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert Systems with Applications, 37(9), 6218–6224.

    Google Scholar 

  • Aragonés-Beltrán, P., Chaparro-González, F., Pastor-Ferrando, J. P., & Pla-Rubio, A. (2014). An AHP (analytic hierarchy process)/ANP (analytic network process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects. Energy, 66, 222–238.

    Google Scholar 

  • Carazo, A. F., Gómez, T., Molina, J., Hernández-Díaz, A. G., Guerrero, F. M., & Caballero, R. (2010). Solving a comprehensive model for multiobjective project portfolio selection. Computers & Operations Research, 37(4), 630–639.

    Google Scholar 

  • Dantzig, G. B., & Cottle, R. W. (1963). Positive (semi-) definite matrices and mathematical programming (No. ORC-63-18-RR). Operations Research Center, University of California, Berkeley.

  • De Reyck, B., Grushka-Cockayne, Y., Lockett, M., Calderini, S. R., Moura, M., & Sloper, A. (2005). The impact of project portfolio management on information technology projects. International Journal of Project Management, 23(7), 524–537.

    Google Scholar 

  • Ehsanifar, M., Eshlaghi, A. T., Keramati, M. A., & Nazemi, J. (2013). The development of UTASTAR Method in fuzzy environment for supplier selection. Editors-in-Chief, 317.

  • Eik-Andresen, P., Landmark, A. D., & Johansen, A. (2015). Managing cost and time in a large portfolio of projects. Procedia Economics and Finance, 21, 502–509.

    Google Scholar 

  • El-Haram, M., Walton, J., Horner, M., Hardcastle, C., Price, A., Bebbington, J., Thomson, C, & Atkin-Wright, T. (2007). Development of an integrated sustainability assessment toolkit. In Conference proceedings, international conference on whole life urban sustainability and its assessment.

  • Enea, M., & Piazza, T. (2004). Project selection by constrained fuzzy AHP. Fuzzy Optimization and Decision Making, 3(1), 39–62.

    Google Scholar 

  • Fernandes, G., Moreira, S., Araújo, M., Pinto, E. B., & Machado, R. (2018). Project management practices for collaborative university-industry R&D: a hybrid approach. Procedia Computer Science, 138, 805–814.

    Google Scholar 

  • Figge, F., Hahn, T., Schaltegger, S., & Wagner, M. (2002). The sustainability balanced scorecard–linking sustainability management to business strategy. Business strategy and the Environment, 11(5), 269–284.

    Google Scholar 

  • Garg, C. P., & Sharma, A. (2018). Sustainable outsourcing partner selection and evaluation using an integrated BWM–VIKOR framework. Environment, Development and Sustainability, 22, 1–29.

    Google Scholar 

  • Ghasemzadeh, F., & Archer, N. P. (2000). Project portfolio selection through decision support. Decision Support Systems, 29(1), 73–88.

    Google Scholar 

  • Ghasemzadeh, F., Archer, N., & Iyogun, P. (1999). A zero-one model for project portfolio selection and scheduling. Journal of the Operational Research Society, 50(7), 745–755.

    Google Scholar 

  • Goumas, M., & Lygerou, V. (2000). An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects. European Journal of Operational Research, 123(3), 606–613.

    Google Scholar 

  • Govers, C. P. (2001). QFD not just a tool but a way of quality management. International Journal of Production Economics, 69(2), 151–159.

    Google Scholar 

  • Green, R. H., Doyle, J. R., & Cook, W. D. (1996). Preference voting and project ranking using DEA and cross-evaluation. European Journal of Operational Research, 90(3), 461–472.

    Google Scholar 

  • Grigoroudis, E., Orfanoudaki, E., & Zopounidis, C. (2012). Strategic performance measurement in a healthcare organisation: a multiple criteria approach based on balanced scorecard. Omega, 40(1), 104–119.

    Google Scholar 

  • Habib, M., Khan, R., & Piracha, J. L. (2009). Analytic network process applied to R&D project selection. In: International conference on information and communication technologies, IEEE.

  • Hadjinicolaou, N., & Dumrak, J. (2017). Investigating association of benefits and barriers in project portfolio management to project success. Procedia Engineering, 182, 274–281.

    Google Scholar 

  • Hsueh, S.-L., & Yan, M.-R. (2011). Enhancing sustainable community developments a multi-criteria evaluation model for energy efficient project selection. Energy Procedia, 5, 135–144.

    Google Scholar 

  • Huang, C.-C., Chu, P.-Y., & Chiang, Y.-H. (2008). A fuzzy AHP application in government-sponsored R&D project selection. Omega, 36(6), 1038–1052.

    Google Scholar 

  • Hunt, R., Killen, C. P., Hunt, R. A., & Kleinschmidt, E. J. (2008). Project portfolio management for product innovation. International journal of quality & reliability management. https://doi.org/10.1108/02656710810843559.

    Article  Google Scholar 

  • Huylenbroeck, G., & Martens, L. (1992). The Average Value Ranking multi-criteria method for project evaluation in regional planning. European Review of Agricultural Economics, 19(2), 237–252.

    Google Scholar 

  • Iamratanakul, S., Patanakul, P., & Milosevic, D. (2008). Project portfolio selection: From past to present. In 2008 4th IEEE international conference on management of innovation and technology, IEEE.

  • Institute, P. M. (2014). The standard for portfolio management, Project Management Institute.

  • Jacquet-Lagreze, E., & Siskos, J. (1982). Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research, 10(2), 151–164.

    Google Scholar 

  • Kalender, Z. T., Vayvay, Ö., & Sciences, B. (2016). The fifth pillar of the balanced scorecard: sustainability. Procedia-Social and Behavioral Sciences, 235, 76–83.

    Google Scholar 

  • Khalili-Damghani, K., & Sadi-Nezhad, S. (2013). A hybrid fuzzy multiple criteria group decision making approach for sustainable project selection. Applied Soft Computing, 13(1), 339–352.

    Google Scholar 

  • Khalili-Damghani, K., Sadi-Nezhad, S., Lotfi, F. H., & Tavana, M. (2013). A hybrid fuzzy rule-based multi-criteria framework for sustainable project portfolio selection. Information Sciences, 220, 442–462.

    Google Scholar 

  • Khalili-Damghani, K., & Tavana, M. (2014). A comprehensive framework for sustainable project portfolio selection based on structural equation modeling. Project Management Journal, 45(2), 83–97.

    Google Scholar 

  • Kudratova, S., Huang, X., & Zhou, X. (2018). Sustainable project selection: optimal project selection considering sustainability under reinvestment strategy. Journal of Cleaner Production, 203, 469–481.

    Google Scholar 

  • Labuschagne, C., & Brent, A. C. (2005). Sustainable project life cycle management: the need to integrate life cycles in the manufacturing sector. International Journal of Project Management, 23(2), 159–168.

    Google Scholar 

  • Liberatore, M. J. (1987). An extension of the analytic hierarchy process for industrial R&D project selection and resource allocation. IEEE Transactions on Engineering Management, 1, 12–18.

    Google Scholar 

  • Linton, J. D., Walsh, S. T., & Morabito, J. (2002). Analysis, ranking and selection of R&D projects in a portfolio. R&D Management, 32(2), 139–148.

    Google Scholar 

  • Liu, H.-T., & Wang, C.-H. (2010). An advanced quality function deployment model using fuzzy analytic network process. Applied Mathematical Modelling, 34(11), 3333–3351.

    Google Scholar 

  • Mahmoodzadeh, S., Shahrabi, J., Pariazar, M., & Zaeri, M. (2007). Project selection by using fuzzy AHP and TOPSIS technique. Engineering and Technology, 30, 333–338.

    Google Scholar 

  • Markowitz, H. J. T. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Martens, M. L., & Carvalho, M. M. (2017). Key factors of sustainability in project management context: a survey exploring the project managers’ perspective. International Journal of Project Management, 35(6), 1084–1102.

    Google Scholar 

  • Meade, L. M., & Presley, A. (2002). R&D project selection using the analytic network process. IEEE Transactions on Engineering Management, 49(1), 59–66.

    Google Scholar 

  • Meskendahl, S. (2010). The influence of business strategy on project portfolio management and its success—a conceptual framework. International Journal of Project Management, 28(8), 807–817.

    Google Scholar 

  • Moghadam, N. B., Samsami, M., Hosseini, S. H., & Sahafzadeh, M. (2015). Utilisation of BSC to transform corporate-level goals into project portfolio strategies. International Journal of Project Organisation and Management, 7(2), 132–150.

    Google Scholar 

  • Mohammadi, F., Sadi, M. K., Nateghi, F., Abdullah, A., & Skitmore, M. (2014). A hybrid quality function deployment and cybernetic analytic network process model for project manager selection. Journal of Civil Engineering and Management, 20(6), 795–809.

    Google Scholar 

  • Mohanty, R., Agarwal, R., Choudhury, A., & Tiwari, M. J. (2005). A fuzzy ANP-based approach to R&D project selection: a case study. International Journal of Production Research, 43(24), 5199–5216.

    Google Scholar 

  • Möller, A., & Schaltegger, S. (2005). The sustainability balanced scorecard as a framework for eco-efficiency analysis. Journal of Industrial Ecology, 9(4), 73–83.

    Google Scholar 

  • Müller, R., Martinsuo, M., & Blomquist, T. (2008). Project portfolio control and portfolio management performance in different contexts. Project Management Journal, 39(3), 28–42.

    Google Scholar 

  • Nowak, M. (2013). Project portfolio selection using interactive approach. Procedia Engineering, 57, 814–822.

    Google Scholar 

  • Ocampo, L. A. (2019). Applying fuzzy AHP–TOPSIS technique in identifying the content strategy of sustainable manufacturing for food production. Environment, Development and Sustainability, 21(5), 2225–2251.

    Google Scholar 

  • Oral, M., Kettani, O., & Lang, P. (1991). A methodology for collective evaluation and selection of industrial R&D projects. Management Science, 37(7), 871–885.

    Google Scholar 

  • Oztaysi, B. (2014). A decision model for information technology selection using AHP integrated TOPSIS-Grey: The case of content management systems. Knowledge-Based Systems, 70, 44–54.

    Google Scholar 

  • Patanakul, P. (2015). Key attributes of effectiveness in managing project portfolio. International Journal of Project Management, 33(5), 1084–1097.

    Google Scholar 

  • Rabbani, A., Zamani, M., Yazdani-Chamzini, A., & Zavadskas, E. K. (2014). Proposing a new integrated model based on sustainability balanced scorecard (SBSC) and MCDM approaches by using linguistic variables for the performance evaluation of oil producing companies. Expert Systems with Applications, 41(16), 7316–7327.

    Google Scholar 

  • Rahmani, N., A. Talebpour, T. J. P.-S. Ahmadi and B. Sciences (2012). “Developing aMulti criteria model for stochastic IT portfolio selection by AHP method.”Procedia-Social and Behavioral Sciences 62: 1041-1045.

  • Saaty, T. (2001). The analytic network process RWS Publications, Pittsburgh.

  • Saaty, T. L., & Takizawa, M. (1986). Dependence and independence: From linear hierarchies to nonlinear networks. European Journal of Operational Research, 26(2), 229–237.

    Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (1998). Diagnosis with dependent symptoms: Bayes theorem and the analytic hierarchy process. Operations Research, 46(4), 491–502.

    Google Scholar 

  • Salehi, K. (2015). A hybrid fuzzy MCDM approach for project selection problem. Decision Science Letters, 4(1), 109–116.

    Google Scholar 

  • Schauß, J., Hirsch, B., Sohn, M. J., & Change, O. (2014). Functional fixation and the balanced scorecard: Adaption of BSC users’ judgment processes. Journal of Accounting & Organizational Change, 10(4), 540–566.

    Google Scholar 

  • Schniederjans, M. J., & Wilson, R. L. (1991). Using the analytic hierarchy process and goal programming for information system project selection. Information & Management, 20(5), 333–342.

    Google Scholar 

  • Shi, L., Wu, K.-J., & Tseng, M.-L. (2017). Improving corporate sustainable development by using an interdependent closed-loop hierarchical structure. Resources, Conservation and Recycling, 119, 24–35.

    Google Scholar 

  • Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2012). An overview of sustainability assessment methodologies. Ecological Indicators, 15(1), 281–299.

    Google Scholar 

  • Siskos, Y., & Yannacopoulos, D. (1985). UTASTAR: An ordinal regression method for building additive value functions. Investigaçao Operacional, 5(1), 39–53.

    Google Scholar 

  • Tavana, M., Keramatpour, M., Santos-Arteaga, F. J., & Ghorbaniane, E. (2015). A fuzzy hybrid project portfolio selection method using data envelopment analysis, TOPSIS and integer programming. Expert Systems with Applications, 42(22), 8432–8444.

    Google Scholar 

  • Tavana, M., Khosrojerdi, G., Mina, H., & Rahman, A. (2019). A hybrid mathematical programming model for optimal project portfolio selection using fuzzy inference system and analytic hierarchy process. Evaluation and Program Planning, 77, 101703.

    Google Scholar 

  • Taylan, O., Bafail, A. O., Abdulaal, R. M., & Kabli, M. R. (2014). Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Applied Soft Computing, 17, 105–116.

    Google Scholar 

  • Teller, J., Unger, B. N., Kock, A., & Gemünden, H. G. (2012). Formalization of project portfolio management: The moderating role of project portfolio complexity. International Journal of Project Management, 30(5), 596–607.

    Google Scholar 

  • Thomson, C. S., M. A. El-Haram and R. Emmanuel (2011). Mapping sustainability assessment with the project life cycle. In Proceedings of the institution of civil engineers-engineering sustainability, Thomas Telford Ltd.

  • Tseng, M.-L. (2009). Application of ANP and DEMATEL to evaluate the decision-making of municipal solid waste management in Metro Manila. Environmental Monitoring and Assessment, 156(1–4), 181.

    Google Scholar 

  • Tseng, M.-L., Lin, Y., Chiu, A., & Liao, J. C. (2008). Using FANP approach on selection of competitive priorities based on cleaner production implementation: a case study in PCB manufacturer, Taiwan. Clean Technologies and Environmental Policy, 10(1), 17–29.

    Google Scholar 

  • Warhurst, A. (2002). Sustainability indicators and sustainability performance management. Mining, Minerals and Sustainable Development, 43, 129.

    Google Scholar 

  • Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy process. Management Science, 26(7), 641–658.

    Google Scholar 

  • Yang, Y., S. L. Yang and J. Yang (2013). A BSC-ANP model for evaluation of strategic fit of new product development projects. In 2013 25th Chinese control and decision conference (CCDC), IEEE.

  • Yüksel, İ., & Dağdeviren, M. (2010). Using the fuzzy analytic network process (ANP) for Balanced Scorecard (BSC): A case study for a manufacturing firm. Expert Systems with Applications, 37(2), 1270–1278.

    Google Scholar 

  • Zhao, H., & Li, N. (2015). Evaluating the performance of thermal power enterprises using sustainability balanced scorecard, fuzzy Delphic and hybrid multi-criteria decision making approaches for sustainability. Journal of Cleaner Production, 108, 569–582.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Farid Ghannadpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section the tables of paired comparison and effect matrix obtained from arithmetic mean are shown.

1.1 Effect matrix of main criteria (internal dependence)

figure b

1.2 Matrix of pairwise comparisons of main criteria (Sustainable Balanced Scorecard respect to the target) (W SBRs)

Goal

C 1

C 2

C 3

C 4

C 5

C 6

W SBRs

C 1

1

4

2

5

0.5

5

0.2856

C 2

0.25

1

2

2

0.5

4

0.1448

C 3

0.5

0.5

1

2

0.2

4

0.112

C 4

0.2

0.5

0.5

1

0.25

3

0.0743

C 5

2

2

5

4

1

3

0.3366

C 6

0.2

0.25

0.25

0.33

0.33

1

0.0468

1.3 Matrix of interdependence paired comparison of main criteria—from a financial perspective

C 1

C 2

C 3

C 5

C 6

W

C 2

1

2

0.5

4

0.2645

C 3

0.5

1

0.2

4

0.1284

C 5

2

5

1

3

0.5327

C 6

0.25

0.25

0.33

1

0.0744

1.4 Special invariant vectors of internal relationship of main criteria (W 3)

W 3

C 1

C 2

C 3

C 4

C 5

C 6

C 1

0

0.2175

0.3137

0

0.0383

0.3243

C 2

0.2645

0

0.1777

0

0.0743

0.1742

C 3

0.1284

0.1388

0

0.1991

0.1256

0.0834

C 4

0

0

0.0875

0

0.2258

0.3386

C 5

0.5327

0.5889

0.3408

0.7334

0

0.0796

C 6

0.0744

0.0549

0.0803

0.0675

0.536

0

1.5 Matrix of paired comparisons of sub-criteria with interdependence according to the main criteria (financial sub-criteria)

C 1

A 11

A 12

A 13

W

A 11

1

0.25

0.11

0.064

A 12

4

1

0.17

0.1856

A 13

9.09

5.88

1

0.7504

1.6 Special invariant vectors of sub-criteria according to the main criteria (W 2)

W 2

C 1

C 2

C 3

C 4

C 5

C 6

A 11

0.064

0

0

0

0

0

A 12

0.1856

0

0

0

0

0

A 13

0.7504

0

0

0

0

0

A 21

0

0.75

0

0

0

0

A 22

0

0.25

0

0

0

0

A 31

0

0

0.8571

0

0

0

A 32

0

0

0.1429

0

0

0

A 41

0

0

0

0.75

0

0

A 42

0

0

0

0.25

0

0

A 51

0

0

0

0

0.2481

0

A 52

0

0

0

0

0.7519

0

A 61

0

0

0

0

0

0.5571

A 62

0

0

0

0

0

0.3202

A 63

0

0

0

0

0

0.1226

1.7 Matrix of paired comparisons of sub-criteria with interdependence according to the sub-criterion (internal rate of return)

C 1

A 12

A 42

A 51

A 61

W

A 12

1

0.17

0.2

0.25

0.5490

A 42

5.88

1

4

5

0.5889

A 51

5

0.25

1

2

0.2175

A 61

4

0.2

0.5

1

0.1388

1.8 Special irregular vectors of sub-criteria with interdependence (W 4)

W 4

A 11

A 12

A 13

A 21

A 22

A 31

A 32

A 41

A 42

A 51

A 52

A 61

A 62

A 63

A 11

0

0.0891

0

0

0

0

0

0

0.2150

0.1740

0

0.4410

0

0

A 12

0.5490

0

0

 

0.1800

0.2309

0.1307

0.1900

0.1620

0.1460

0.1190

0.1910

0.2990

0.0880

A 13

0

0

0

0.2061

0.1126

0.3190

0

0.1500

0.1660

0.1080

0.1600

0.1160

0.2000

0.2100

A 21

0

0.1473

0.1722

0

0.1315

0

0.2980

0.1640

0

0.0810

0

0

0.1610

0.1530

A 22

0

0.1302

0.1424

0.1856

0

0

0.1160

0.1150

0

0.0660

0

0

0.1180

0.1410

A 31

0

0.0735

0.0822

0

0

0

0.0570

0.0480

0.1150

0.0410

0

0.1000

0.0690

0

A 32

0

0.0744

0

0.1056

0.0874

0.1836

0

0.0430

0.0730

0.0510

0.1790

0

0

0.0780

A 41

0

0.0467

0.0751

0.0690

0.0670

0.0610

0.0432

0

0.0600

0.0330

0.0950

0

0

0.0640

A 42

0.5889

0.0440

0.0600

0

0.0830

0.0501

0.0609

0.0300

0.0490

0.0450

0

0.0670

0

0.0400

A 51

0.2175

0.0333

0.0431

0.0456

0.0368

0.0367

0.0315

0.0180

0.0330

0

0.0530

0.0460

0.0550

0.0330

A 52

0

0.1741

0.2222

0

0.1626

0

0.1671

0.1090

0

0.0910

0

0

0.0430

0.1590

A 61

0.1388

0.0263

0.0329

0

0

0.0333

0

0

0.0820

0.0170

0

0

0.0310

0

A 62

0

0.0260

0.0232

0.0456

0.0499

0.0854

0

0

0

0.0250

0.0500

0.0390

0

0.0340

A 63

0

0.1351

0.1466

0.1244

0.0894

0

0.0958

0.1320

0.0450

0.1220

0.3430

0

0.0240

0

1.9 Paired comparison of alternatives interdependence (based on rate of return)

A 11

P 1

P 2

P 3

P 4

P 5

W

P 1

1

2.666667

1

1.333333

1

0.242424

P 2

0.375

1

0.375

0.5

0.375

0.090909

P 3

1

2.666667

1

1.333333

1

0.242424

P 4

0.75

2

0.75

1

0.75

0.181818

P 5

1

2.666667

1

1.333333

1

0.242424

1.10 Special irregular vectors of sub-criteria with interdependence (W 6)

W 6

A 11

A 12

A 13

A 21

A 22

A 31

A 32

A 41

A 42

A 51

A 52

A 61

A 62

A 63

P 1

0.2424

0.175

0.2

0.25

0.175

0.1842

0.1842

0.186

0.2222

0.2308

0.2813

0.2432

0.2692

0.2051

P 2

0.0909

0.15

0.2

0.25

0.2

0.1579

0.1579

0.2093

0.2963

0.2051

0.1875

0.1892

0.1538

0.1282

P 3

0.2424

0.225

0.2

0.25

0.175

0.1842

0.1842

0.186

0.2222

0.2308

0.2813

0.2432

0.3077

0.2308

P 4

0.1818

0.225

0.2

0.1111

0.225

0.2368

0.2368

0.2093

0.1111

0.1795

0.125

0.1351

0.1538

0.2308

P 5

0.2424

0.225

0.2

0.1389

0.225

0.2368

0.2368

0.2093

0.1481

0.1538

0.125

0.1892

0.1154

0.2051

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghannadpour, S.F., Hoseini, A.R., Bagherpour, M. et al. Appraising the triple bottom line utility of sustainable project portfolio selection using a novel multi-criteria house of portfolio. Environ Dev Sustain 23, 3396–3437 (2021). https://doi.org/10.1007/s10668-020-00724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00724-y

Keywords

Navigation