Skip to main content

Traditional ecological knowledge in a ferruginous ecosystem management: lessons for diversifying land use

Abstract

Soils developed on banded iron formations (BIFs) present severe physical and chemical limitations to the establishment and growth of non-native cultivated plants. In Brazil, these areas are extensively exploited by Fe and Al mining, causing impacts that further hamper the growth of plant species for the purpose of ecological restoration or rehabilitation. However, traditional communities have historically managed this type of environment successfully for subsistence crops. An understanding of the methods used for such purpose will help future studies of land-use diversification and rehabilitation in these ferruginous soils. The aim of this study was to investigate the traditional ecological knowledge (TEK) of a community with great cultural richness inhabiting areas on BIFs in Ouro Preto, Brazil. Interviewees were selected by the snowball technique. Ethnoecological methods (interviews, free lists and guided visits) were used to record the types of soil management, cultivated species and socioeconomic profile of specialists. Specialists are mainly women over 45 years old, low schooling, born and living in the area for a long period. Trial and error and vertical transmission represent the main forms of TEK acquisition. There was high diversity of praxis in the ecological soil management, as well as of cultivated species (183). The methods used are efficient for the physical and chemical soil improvement, allowing the establishment of species, increasing agrobiodiversity and diversifying land use. The used techniques can provide technologies for the rehabilitation of mined areas, confirming the importance of ethnoecological studies for this purpose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142. https://doi.org/10.1016/j.geoderma.2004.01.003.

    CAS  Article  Google Scholar 

  • Albuquerque, U. P. (1999). Manejo tradicional de plantas em regiões neotropicais. Acta Botanica Brasilica, 13, 307–315.

    Article  Google Scholar 

  • Albuquerque, U. P., Paiva de Lucena, R. F., & Cunha, L. V. F. C. (2010). Métodos e técnicas na pesquisa etnobiológica e etnoecológica. Recife: NUPPEA.

    Google Scholar 

  • Alleoni, L. R. F., Iglesias, C. S. M., Mello, S. C., Camargo, O. A., Casagrande, J. C., & Lavorenti, N. A. (2005). Atributos do solo relacionados à adsorção de cádmio e cobre em solos tropicais. Acta Scientiarum Agronomy, 27, 729–737. https://doi.org/10.4025/actasciagron.v27i4.1348.

    CAS  Article  Google Scholar 

  • Altieri, M. A. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 93, 1–24. https://doi.org/10.1016/S0167-8809(02)00085-3.

    Article  Google Scholar 

  • Altieri, M. A. (2004). Agroecologia: A dinâmica produtiva da agricultura sustentável. Porto Alegre: UFRGS.

    Google Scholar 

  • Altieri, M. A., Silva, E. N., & Nicholls, C. I. (2003). O papel da biodiversidade no manejo de pragas. Riberão Preto: Holos.

    Google Scholar 

  • Angel-Pérez, A. L., & Mendoza, M. A. (2004). Totonac homegardens and natural resources in Veracruz, Mexico. Agriculture and Human Values, 21, 329–346. https://doi.org/10.1007/s10460-004-1219-9.

    Article  Google Scholar 

  • Barboza, E., Moline, E. F. V., Schlindwein, J. A., Farias, E. A. P., & Brasilino, M. F. (2011). Fertilidade de Solos. Enciclopédia Biosfera, Centro Científico Conhecer - Goiânia, 7, 586–594.

    Google Scholar 

  • Benites, V. M., Caiafa, A. N., Mendonça, E. S., Schaefer, C. E., & Ker, J. C. (2003). Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do Espinhaço. FLORAM, 10, 76–85.

    Google Scholar 

  • Benites, V. M., Scheafer, C. E., Simas, F. N. B., & Santos, H. G. (2007). Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Revista Brasileira de Botânica, 30, 569–577. https://doi.org/10.1590/S0100-84042007000400003.

    Article  Google Scholar 

  • Bickman, L., & Rog, D. J. (1998). Handbook of applied social research methods. London: SAGE Publications.

    Google Scholar 

  • Brady, N. C., & Weil, R. R. (2013). Elementos da Natureza e Propriedades dos Solos. Porto Alegre: Bookman.

    Google Scholar 

  • Carmo, F. F., Carmo, F. F., Campos, I. C., & Jacobi, C. M. (2012). Cangas ilhas de ferro estratégicas para a conservação. Ciência Hoje, 50, 49–53.

    Google Scholar 

  • Carmo, F. F., et al. (2017). Fundão tailings dam failures: The environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in Ecology and Conservation, 15, 145–151. https://doi.org/10.1016/j.pecon.2017.06.002.

    Article  Google Scholar 

  • Dewaelheyns, V., Elsen, A., Vandendriessche, H., & Gulinck, H. (2013). Garden management and soil fertility in flemish domestic gardens. Landscape and Urban Planning, 116, 25–35. https://doi.org/10.1016/j.landurbplan.2013.03.010.

    Article  Google Scholar 

  • Dias, D. D. (2017). Recrutamento e estabelecimento de plantas após transposição de topsoil para área degradada pela mineração de bauxita. Federal University of Ouro Preto. Master Thesis. https://www.repositorio.ufop.br/handle/123456789/9666

  • Dikinya, O., & Mufwanzala, N. (2010). Chicken manure—enhanced soil fertility and productivity: Effects of application rates. Journal of Soil Science and Environmental Management, 1, 46–54.

    Google Scholar 

  • EMBRAPA. (1997). Manual de Métodos de Análise de Solo. Rio de Janeiro: Centro Nacional de Pesquisa de Solos.

    Google Scholar 

  • Engle, P. L., & Black, M. M. (2008). The effect of poverty on child development and educational outcomes. Annals of the New York Academy of Sciences, 1136, 243–256. https://doi.org/10.1196/annals.1425.023.

    Article  Google Scholar 

  • Fernandes, G. W., et al. (2016). Deep into the mud: Ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Natureza & Conservação, 14, 35–45. https://doi.org/10.1016/j.ncon.2016.10.003.

    Article  Google Scholar 

  • Ferreira, M. C., & Vieira, D. L. M. (2017). Topsoil for restoration: Resprouting of root fragments and germination of pioneers trigger tropical dry forest regeneration. Ecological Engineering, 103, 1–12. https://doi.org/10.1016/j.ecoleng.2017.03.006.

    Article  Google Scholar 

  • Fess, T. L., & Benedito, V. A. (2018). Organic versus conventional cropping sustainability: A comparative system analysis. Sustainability, 10(1), 272. https://doi.org/10.3390/su10010272.

    Article  Google Scholar 

  • Figueiredo, M. A., Leite, M. G. P., & Kozovits, A. R. (2016). Influence of soil texture on nutrients and potentially hazardous elements in Eremanthus erythropappus. International Journal of Phytoremediation, 18, 487–493. https://doi.org/10.1080/15226514.2015.1115961.

    CAS  Article  Google Scholar 

  • Gagen, E. J., Levett, A., Paz, A., Gastauer, M., Caldeira, C. F., Valadares, R. B. D. S., et al. (2019). Biogeochemical processes in canga ecosystems: Armoring of iron ore against erosion and importance in iron duricrust restoration in Brazil. Ore Geology Reviews, 107, 573–586. https://doi.org/10.1016/j.oregeorev.2019.03.013.

    Article  Google Scholar 

  • GFT. (2016). Avaliação dos efeitos e desdobramentos do rompimento da Barragem de Fundão em Mariana-MG. Governo de Minas Gerais, Secretária de estado de desenvolvimento regional, política urbana e gestão metropolitana, Belo Horizonte

  • Gibson, N., Yates, C. J., & Dillon, R. (2010). Plant communities of the ironstone ranges of South Western Australia: Hotspots for plant diversity and mineral deposits. Biodiversity and Conservation, 19, 3951–3962. https://doi.org/10.1007/s10531-010-9939-1.

    Article  Google Scholar 

  • Guimarães, M. F. M. (2016). Plantas úteis em comunidades urbanas: A importância das espécies exóticas e do gênero na manutenção do conhecimento e uso dos recursos vegetais. Mestrado: Universidade Federal de Ouro Preto.

    Google Scholar 

  • Harmon, G. W., & Keim, F. D. (1934). Percentage and viability of weed seeds recovered in the feces of farm animals and their longevity when buried in manure. American Society of Agronomy, 26, 762–767.

    Article  Google Scholar 

  • Hopper, S. D. (2009). OCBIL theory: Towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant and Soil, 322, 49–86. https://doi.org/10.1007/s11104-009-0068-0.

    CAS  Article  Google Scholar 

  • Howard, P. (2003). The Major Importance of minor resources: Women and plant biodiversity. International Institute for Environment and Development Gatekeeper Series No. 112, London.

  • Howard, P. (2006). Gender and social dynamics in swidden and homegardens in Latin America. In B. M. Kumar & P. K. R. Nair (Eds.), Tropical Homegardens: A time-tested example of sustainable agroforestry (Vol. 3, pp. 159–182). Dordrecht: Springer.

    Chapter  Google Scholar 

  • IBGE. (2015). Estimativas da população dos municipios e unidades da federação brasileiros. https://www.ibge.gov.br/estatisticas-novoportal/por-cidade-estado-estatisticas. Accessed 25 June 2017.

  • Iii, A. P. G. (2009). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.

    Article  Google Scholar 

  • Jacobi, C. M., & Carmo, F. F. (2008a). The contribution of ironstone outcrops to plant diversity in the Iron Quadrangle, a threatened Brazilian landscape. Ambio, 37, 324–326. https://doi.org/10.1579/0044-7447(2008)37%5b324:tcoiot%5d2.0.co;2.

    Article  Google Scholar 

  • Jacobi, C. M., & Carmo, F. F. (2008b). Diversidade dos campos rupestres ferruginosos no Quadrilátero Ferrífero, MG. Megadiversidade, 4, 25–33.

    Google Scholar 

  • Jacobi, C. M., Carmo, F. F., Vincent, R. C., & Stehmann, J. R. (2007). Plant communities on ironstone outcrops: A diverse and endangered Brazilian ecosystem. Biodiversity and Conservation, 16, 2185–2200. https://doi.org/10.1007/s10531-007-9156-8.

    Article  Google Scholar 

  • Jensen, M. (1993). Soil conditions, vegetation structure and biomass of a Javanese homegarden. Agroforestry Systems, 24, 171–186.

    CAS  Article  Google Scholar 

  • Jose, D., & Shanmugaratnam, N. (1993). Traditional homegardens of Kerala: A sustainable human ecosystem. Agroforestry Systems, 24, 203–213.

    Article  Google Scholar 

  • Keskinen, R., Saastamoinen, M., Nikama, J., Särkijärvi, S., Myllymäki, M., Salo, T., et al. (2017). Recycling nutrients from hourse manure: Effects of bedding type its compostability. Agricultural and Food Science, 26, 68–79.

    CAS  Article  Google Scholar 

  • Kumar, B. M., & Nair, P. K. R. (2004). The enigma of tropical homegardens. Agroforestry Systems, 61, 135–152. https://doi.org/10.1023/B:AGFO.0000028995.13227.ca.

    Article  Google Scholar 

  • Lashomb, J. H., & Yuen-Shaung, N. G. (1984). Colonization by colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), in rotated and nonrotated potato fields. Environmental Entomology, 13, 1352–1356.

    Article  Google Scholar 

  • Le Stradic, S., et al. (2016). Comparison of translocation methods to conserve metallophyte communities in the Southeastern D.R. Congo. Environmental Science and Pollution Research International, 23, 13681–13692. https://doi.org/10.1007/s11356-015-5548-6.

    CAS  Article  Google Scholar 

  • Mace, G. M., Norris, K., & Fitter, A. H. (2012). Biodiversity and ecosystem services: a multilayered relationship. Trends in Ecology & Evolution, 27, 19–26.

    Article  Google Scholar 

  • Machado, N. A., Leite, M. G., Figueiredo, M. A., Leite, G. P., Figueiredo, M. A., & Kozovits, A. R. (2013). Growing Eremanthus erythropappus in crushed laterite: A promising alternative to topsoil for bauxite-mine revegetation. Journal of Environmental Management, 129, 149–156.

    Article  Google Scholar 

  • Mair, J., & Marti, I. (2008). Entrepreneurship in and around institutional voids: A case study from Bangladesh. Journal of Business Venturing, 24, 419–435. https://doi.org/10.1016/j.jbusvent.2008.04.006.

    Article  Google Scholar 

  • Mallmann, F. J. K., Miotto, A., Santana, N. A., & Jacques, R. J. S. (2016). Manejos indicados pela pesquisa para mitigar o excesso de metais pesados nos solos do sul do Brasil. In T. Tiecher (Ed.), Manejo e conservação do solo e da água em pequenas propriedades rurais no sul do Brasil: práticas alternativas de manejo visando a conservação do solo e da água (pp. 118–140). Porto Alegre: UFRGS.

    Google Scholar 

  • Marciel, R., Giacomini, S. J., Ferreira, P. A. A., & Eckhardt, D. P. (2016). Plantas de cobertura de solo e agricultura sustentável: espécies, matéria seca e ciclagem de carbono e nitrogênio. In T. Tiecher (Ed.), Manejo e conservação do solo e da água em pequenas propriedades rurais no sul do Brasil: práticas alternativas de manejo visando a conservação do solo e da água (pp. 7–22). Porto Alegre, Rio Grande do Sul: UFRGS.

    Google Scholar 

  • Meirelles, S. T., Pivello, V. R., & Joly, C. A. (1999). The vegetation of granite rock outcrops in Rio de Janeiro, Brazil, and the need for its protection. Environmental Conservation, 26, 10–20.

    Article  Google Scholar 

  • Messias, M. C. T. B., & Carmo, F. F. (2015). Flora e vegetação em substratos ferruginosos do Sudeste do Quadrilátero Ferrífero. In F. F. Carmo, & L. H. Y. Kamino (orgs.), Geossistemas Ferruginosos no Brasil (pp. 335–360). Instituto Prístino, Belo Horizonte.

  • Messias, M. C. T. B., Leite, M. G. P., Meira-Neto, J. A. A., & Kozovits, A. R. (2011). Life-form spectra of quartzite and itabirite rocky outcrop sites, Minas Gerais, Brazil. Biota Neotropica, 11, 1–14.

    Article  Google Scholar 

  • Messias, M. C. T. B., Menegatto, M. F., Prado, A. C. C., Santos, B. R., & Guimarães, M. F. M. (2015). Uso popular de plantas medicinais e perfil socioeconômico dos usuários: Um estudo em área urbana em Ouro Preto, MG, Brasil. Revista Brasileira de Plantas Medicinais, 17, 76–104. https://doi.org/10.1590/1983-084X/12_139.

    Article  Google Scholar 

  • Mikulcak, F., Newig, J., Milcu, A. I., Hartel, T., & Fischer, J. (2013). Integrating rural development and biodiversity conservation in Central Romania. Environmental Conservation, 40, 129–137. https://doi.org/10.1017/S0376892912000392.

    Article  Google Scholar 

  • Miller, R. P., Penn, J. W., & Leeuwen, J. (2006). Amazonian homegardens: Their ethnohistory and potential contribution to agroforestry development. In B. M. Kumar & P. K. R. Nair (Eds.), Tropical Homegardens: A time-tested example of sustainable agroforestry (Vol. 3, pp. 43–60). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Nair, P. K. R. (1993). An introduction to agroforestry. Dordrecht: Kluwer Academic Publishers, ICRAF.

    Book  Google Scholar 

  • Nellemann, C., & Corcoran, E. (Eds.). (2010). Dead planet, living planet—Biodiversity and ecosystem restoration for sustainable development. Nairobi: United Nations Environment Programme.

    Google Scholar 

  • Neves, A. C. O., Nunes, F. P., Carvalho, F. A., & Fernandes, G. W. (2016). Neglect of ecosystems services by mining, and the worst environmental disaster in Brazil. Natureza & Conservação, 14, 24–27. https://doi.org/10.1016/j.ncon.2016.03.002.

    Article  Google Scholar 

  • Oliveira, P. D., Ambrosini, V. G., Melo, G. W. B., Zalamena, J., & Brunetto, G. (2015). Uso de calcário na amenização da toxidez de cobre em videiras jovens. Científica, 43, 427–435. https://doi.org/10.15361/1984-5529.2015v43n4p427-435.

    Article  Google Scholar 

  • Oliveira, R. S., Galvao, H. C., Campos, M. C. R., Eller, C. B., Pearse, S. J., & Lambers, H. (2014). Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytologist, 205, 1183–1194. https://doi.org/10.1111/nph.13175.

    CAS  Article  Google Scholar 

  • Patterson, M. L. (2000). Agroforestry in Belize: Maya homegardens in San Lucas. Thesis, University of Alberta.

  • Pulido, M. T., Calderón, E. M. P., Martínez-Ballesté, A., Maldonado-Almanza, B., Saynes, A., & Pacheco, R. M. (2008). Home gardens as an alternative for sustainability: Challenges and perspectives in Latin America. In U. P. Alburquerque & M. A. Ramos (Eds.), Current topics in ethnobotany (pp. 2–25). Kerala: Research Signpost.

    Google Scholar 

  • Queiroz, E. M., Santos, A. M., Castro, I. M., Machado-Coelho, G. L., Candido, A. P., Leite, T. M., et al. (2013). Genetic composition of a Brazilian population: The footprint of the Gold Cycle. Genetics and Molecular Research, 12(4), 5124–5133.

    CAS  Article  Google Scholar 

  • Ram, A. A. M. (2017). Effective use of cow dung manure for healthy plant growth. International Journal of Advanced Research and Development, 2, 218–221.

    Google Scholar 

  • Rivera, G. F. (2017). Anatomía sobre los sistemas de innovación agrícola experiencias en las comunidades productoras de Panamá, el caso de la Musa (spp.). Editorial Académica Española, Mauritius.

  • Santos, G. C. G., & Rodella, A. A. (2007). Efeito da adição de fontes de matéria orgânica como amenizantes do efeito tóxico de B, Zn, Cu, Mn e Pb no cultivo de Brassica juncea. Revista Brasileira de Ciência do Solo, 31, 793–804. https://doi.org/10.1590/S0100-06832007000400019.

    Article  Google Scholar 

  • Santos, M. C., & Varajão, A. F. D. C. (2003). Sedimentation and pedogenic features in a clay deposit in Quadrilátero Ferrífero, Minas Gerais, Brazil. Anais da Academia Brasileira de Ciências, 76, 147–159.

    Article  Google Scholar 

  • Schaefer, C. E., et al. (2015). Solos desenvovidos sobre canga ferruginosa no brasil: Uma revisão critica e papel ecológico de termiteiros. In F. F. Carmo & L. H. Y. Kamino (Eds.), Geosistemas ferruginosos do Brasil: Áreas prioritárias para conservação da diversidade geológica e biológica, patrimônio cultural e serviços ambientais (pp. 77–102). Belo Horizonte: 3i Editora.

    Google Scholar 

  • Schettini, A. T., Leite, M. G. P., Messias, M. C. T. B., Gauthier, A., Li, H., & Kozovits, A. R. (2017). Exploring Al, Mn and Fe phytoextraction in 27 ferruginous rocky outcrops plant species. Flora, 238, 175–182. https://doi.org/10.1016/j.flora.2017.05.004.

    Article  Google Scholar 

  • Silveira, F. A. O., et al. (2015). Ecology and evolution of plant diversity in the endangered campo rupestre: A neglected conservation priority. Plant and Soil, 403, 129–152. https://doi.org/10.1007/s11104-015-2637-8.

    CAS  Article  Google Scholar 

  • Soltanmohammadi, H., Osanloo, M., & Bazzazi, A. A. (2010). An analytical approach with a reliable logic and a ranking policy for post-mining land-use determination. Land Use Policy, 27, 364–372.

    Article  Google Scholar 

  • Toledo, V. M., & Barrera-Bassols, N. (2009). A etnoecologia: Uma ciência pós - normal que estuda as sabedorias tradicionais. Desenvol-vimento e Meio Ambiente, 20, 31–45. https://doi.org/10.5380/dma.v20i0.14519.

    Article  Google Scholar 

  • U.S. Geological Survey. (2018). Mineral commodity summaries 2018. U.S Department of the Interior, U.S. Geological Survey. https://doi.org/10.3133/70194932

  • Vandermeer, J. (1989). The ecology of intercropping. Cambridge: Cambridge University.

    Book  Google Scholar 

  • Varajão, C. A. C., Salgado, A. A. R., Varajão, A. F. D. C., Braucher, R., Colin, F., & Nalini, H. Á., Jr. (2009). Estudo da evolução da paisagem do quadrilátero ferrífero (Minas Gerais, Brasil) por meio da mensuração das taxas de erosão (10Be) e da pedogênese. Revista Brasileira de Ciência do Solo, 33, 1409–1425. https://doi.org/10.1590/S0100-06832009000500032.

    Article  Google Scholar 

  • Viana, P. L., & Lombardi, J. A. (2007). Florística e caracterização dos campos rupestres sobre canga na Serra da Calçada, Minas Gerais, Brasil. Rodriguésia, 58, 159–177. https://doi.org/10.1590/2175-7860200758112.

    Article  Google Scholar 

  • Vincent, R. C., & Meguro, M. (2008). Influence of soil properties on the abundance of plant species in ferruginous rocky soil vegetation, southeastern Brazil. Revista Brasileira de Botânica, 31, 377–388. https://doi.org/10.1590/S0100-84042008000300002.

    Article  Google Scholar 

  • Voeks, R. A., & Leony, A. (2004). Forgetting the forest: Assessing medicinal plant erosion in eastern Brazil. Economic Botany, 58, S294–S306.

    Article  Google Scholar 

  • Wentworth, C. K. (1922). Scale of grade and class terms of clastic sediments. The Journal of Geology, 30, 377–392. https://doi.org/10.1086/622910.

    Article  Google Scholar 

  • Wiersum, K. F. (2006). Diversity and change in homegarden cultivation in Indonesia. In B. M. Kumar & P. K. R. Nair (Eds.), Tropical homegardens: A time-tested example of sustainable agroforestry (Vol. 3, pp. 13–24). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis (4th ed.). Upper Saddle River: Prentice-Hall.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the kindness of local informants and the financial support from the Foundation for Research Support of Minas Gerais (FAPEMIG) and the Coordination for Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Teixeira Braga Messias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urriago-Ospina, L.M., Jardim, C.M., Rivera-Fernández, G. et al. Traditional ecological knowledge in a ferruginous ecosystem management: lessons for diversifying land use. Environ Dev Sustain 23, 2092–2121 (2021). https://doi.org/10.1007/s10668-020-00665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00665-6

Keywords

  • Agroecological techniques
  • Canga
  • Ethnobotany
  • Home gardens
  • Metalliferous soils
  • Mining areas