Skip to main content

Advertisement

Log in

Groundwater evaluation for drinking purposes using statistical index: study of Akola and Buldhana districts of Maharashtra, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The groundwater quality for drinking purposes was assessed using statistical index of Akola and Buldhana districts, Maharashtra, India. The sampling was performed in both the seasons (pre-monsoon and post-monsoon), a total of nine water quality parameters (pH, TDS, Ca, Mg, Na, K, Cl, HCO3 and SO4) were estimated. Water quality index (WQI) method was used to classify groundwater on the basis of score, and WQI maps were generated using ArcGIS 10.3 software. These thematic maps of WQI have given detailed information of groundwater suitable areas for drinking purposes during pre-monsoon and post-monsoon. Majority of water samples falls in the category of suitable zones for drinking purposes. The aqueous geochemical modeling has been given statistics of mineral exposed during pre-monsoon and post-monsoon of the Mahesh river basin area. Geochemical model WATEQ4F has been used to compute the saturation index of different minerals of the study area. The saturation index of the carbonates helps us to know the thermodynamic stability of groundwater and to discover out the geochemical movements of groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amos, P. W., & Younger, P. L. (2003). Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate. Water Research, 37, 108–120.

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard method for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Batabyal, A. K., & Chakraborty, S. (2015). Hydro-geochemistry and water quality index in the assessment of groundwater quality for drinking uses. Water Environment Research, 87(7), 607–617. https://doi.org/10.2175/106143015X14212658613956.

    Article  CAS  Google Scholar 

  • Bhargava, D. S. (1983). Use of a water quality index for river classification and zoning of the Ganga River. Environ Pollution Series B, Chemical and Physical, 6(1), 51–67.

    Article  Google Scholar 

  • Bureau of Indian Standards. (2012). Specification for drinking water. IS: 10500, New Delhi, India.

  • CGWB. (2010). Ground water quality in shallow aquifers of India. Faridabad: Central Ground Water Board, Ministry of Water Resources, Government of India.

    Google Scholar 

  • Cude, C. G. (2001). Oregon water quality index: A tool for evaluating water quality management effectiveness. Journal of American Water Resource Association., 37(1), 125–137.

    Article  CAS  Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Gajbhiye, S., Meshram, C., Singh, S. K., Srivastava, P. K., & Islam, T. (2016). Precipitation trend analysis of Sindh River basin, India, from 102-year record (1901–2002). Atmospheric Science Letters, 17, 71–77.

    Article  Google Scholar 

  • Gautam, S. K., Maharana, C., Sharma, D., Singh A. K., Tripathi, J. K., & Singh, S. (2015). Evaluation of groundwater quality in the Chotanagpur plateau region of the Subarnarekha river basin, Jharkhand State, India. Sustainability of Water Quality and Ecology, 6, 57–74.

  • Gautam, S. K., Singh, A. K., Tripathi, J. K., Singh, S. K., Srivastava, P. K., Narsimlu, B, & Singh, P. (2016). Appraisal of surface and groundwater of the Subarnarekha River Basin, Jharkhand, India: Using Remote Sensing, Irrigation Indices and Statistical Techniques. In P. K. Srivastva, P. C. Pandey, P. Kumar, A. S. Raghubanshi, & D. Han (Eds.), Geospatial technology for water resource applications (pp. 144–169). Boca Raton, FL: CRC Press.

  • Gautam, S. K., Tziritis, E., Singh S. K., Tripathi, J. K., & Singh, A. K. (2018). Environmental monitoring of water resources with the use of PoS index: A case study from Subarnarekha River basin, India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7245-5.

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Fed, 37(3), 300–306.

    Google Scholar 

  • Jacintha, T. G. A., Rawat, K. S., Mishra, A., & Singh, S. K. (2016). Hydrogeochemical characterization of groundwater of Peninsular Indian region using multivariate statistical techniques. Applied Water Science, 7(6), 3001–3013. https://doi.org/10.1007/s13201-016-0400-9.

    Article  CAS  Google Scholar 

  • Karanth, K. R. (1987). Groundwater assessment development and management. New York: McGraw-Hill.

    Google Scholar 

  • Khadri, S. F. R., & Pande, C. (2016). Ground water flow modeling for calibrating steady state using MODFLOW software—A case study of Mahesh River Basin, India. Modeling Earth Systems and Environment, 2(1), 2–17.

    Article  Google Scholar 

  • Khadri, S. F. R., Pande, C., & Moharir, K. (2013). Groundwater quality mapping of PTU-1 watershed in Akola district of Maharashtra India using geographic information system techniques. International Journal of Scientific & Engineering Research, 4, 1–17.

    Google Scholar 

  • Moharir, K., Pande, C., & Patil, S. (2017). Inverse modeling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software. Geoscience Frontiers, 8, 1385–1395.

    Article  Google Scholar 

  • Moharir, K., Pande, C., Singh, S., Choudhari, P., Kishan, R., & Jeyakumar, L. (2019). Spatial interpolation approach-based appraisal of groundwater quality of arid regions. Journal of Water Supply: Research and Technology-AQUA. https://iwaponline.com/aqua/articlepdf/doi/10.2166/aqua.2019.026/588295.

  • MPCB. (2009). Evaluation of groundwater quality of Maharashtra, Maharashtra Pollution Control Board, Chapter-6.

  • Nemčić-Jurec, J., Singh, S. K., Jazbec, A., Gautam, S. K., & Kovač, I. (2019). Hydrochemical investigations of groundwater quality for drinking and irrigational purposes: Two case studies of Koprivnica-Križevci County (Croatia) and district Allahabad (India). Sustainable Water Resources Management, 5(2), 467–490.

    Article  Google Scholar 

  • Ott, W. R. (1978). Water quality indices: A survey of indices used in the United States. Environmental Protection Agency, EPA-600\4-78-005. Washington, DC.

  • Pande, C. B., Khadri, S. F. R., Moharir, N. K., & Patode, R. S. (2017). Assessment of groundwater potential zonation of Mahesh River basin Akola and Buldhana districts, Maharashtra, India using remote sensing and GIS techniques. Sustainable Water Resources Management. https://doi.org/10.1007/s40899-017-0193-5.

    Article  Google Scholar 

  • Pande, C. B., & Moharir, K. (2015). GIS-based quantitative morphometric analysis and its consequences: A case study from Shanur River Basin, Maharashtra India. Applied Water Science, 7(2), 861–871.

    Article  Google Scholar 

  • Pande, C. B., Moharir, K. N., & Pande, R. (2018). Assessment of morphometric and hypsometric study for watershed development using spatial technology—A case study of Wardha river basin in the Maharashtra, India. International Journal of River Basin Management, 4(4), 1–36.

    Article  Google Scholar 

  • Pande, C. B., Moharir, K. N., Singh, S. K., & Varade, A. M. (2019). An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central India. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-019-00409-1.

    Article  Google Scholar 

  • Patode, R. S., Pande, C. B., Nagdeve, B. M., Moharir, K. N., & Wankhade, R. M. (2017). Planning of conservation measures for watershed management and development by using geospatial technology—A case study of Patur watershed in Akola district of Maharashtra. Current World Environment, 12(3), 708–716.

    Article  Google Scholar 

  • Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquía River. Water Research, 34, 2915–2926.

    Article  CAS  Google Scholar 

  • Ponsadailakshmi, S., Sankarib, G., Prasanna, S. C., & Madhurambal, G. (2018). Evaluation of water quality suitability for drinking using drinking water quality index in Nagapattinam district, Tamil Nadu in Southern India. Groundwater for Sustainable Development, 6, 43–49.

    Article  Google Scholar 

  • Rawat, K., Pradhan, S., Tripathi, V., Jeyakumar, L., & Singh, S. K. (2019). Statistical approach to evaluate groundwater contamination for drinking and irrigation suitability. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2019.100251.

    Article  Google Scholar 

  • Rawat, K. S., Mishra, A. K., & Singh, S. K. (2017). Mapping of groundwater quality using normalized difference dispersal index of Dwarka sub-city at Delhi national capital of India. ISH Journal of Hydraulic Engineering, 23(3), 229–240.

    Article  Google Scholar 

  • Rawat, K. S., & Singh, S. K. (2018). Water quality indices and GIS-based evaluation of a decadal groundwater quality. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2018.1452462.

    Article  Google Scholar 

  • Singh, S., Singh, C., Kumar, K., Gupta, R., & Mukherjee, S. (2009). Spatial-temporal monitoring of groundwater using multivariate statistical techniques in Bareilly district of Uttar Pradesh, India. Journal of Hydrology and Hydromechanics, 57, 45–54.

  • Singh, S. K., Singh, P., & Gautam, S. K. (2016). Appraisal of urban lake water quality through numerical index, multivariate statistics and earth observation data sets. International Journal of Environmental Science and Technology, 13(2), 445–456. https://doi.org/10.1007/s13762-015-0850-x.

    Article  Google Scholar 

  • Singh, S. K., Srivastava, P. K., Gupta, M., & Mukherjee, S. (2012). Modeling mineral phase change chemistry of groundwater in a rural-urban fringe. Water Science and Technology, 66(7), 1502–1510. https://doi.org/10.2166/wst.2012.338.

    Article  CAS  Google Scholar 

  • Singh, S. K., Srivastava, P. K., & Pandey, A. C. (2013a). Fluoride contamination mapping of groundwater in Northern India integrated with geochemical indicators and GIS. Water Science and Technology: Water Supply, 13(6), 1513–1523. https://doi.org/10.2166/ws.2013.160.

    Article  CAS  Google Scholar 

  • Singh, S. K., Srivastava, P. K., Pandey, A. C., & Gautam, S. K. (2013b). Integrated assessment of groundwater influenced by a confluence river system: Concurrence with remote sensing and geochemical modelling. Water Resources Management, 27(12), 4291–4313. https://doi.org/10.1007/s11269-013-0408-y.

    Article  Google Scholar 

  • Singh, S. K., Srivastava, P. K., Singh, D., Han, D., Gautam, S. K., & Pandey, A. C. (2015). Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: Case study of Allahabad district, India. Environmental Geochemistry and Health, 37(1), 157–180. https://doi.org/10.1007/s10653-014-9638-z.

    Article  CAS  Google Scholar 

  • Srivastava, P. K., Singh, S. K., Gupta, M., Thakur, J. K., & Mukherjee, S. (2013). Modeling impact of land use change trajectories on groundwater quality using remote sensing and GIS. Environmental Engineering and Management Journal, 12(12), 2343–2355.

    Article  Google Scholar 

  • Stambuk-Giljanovik, N. (2003). Comparison of Dalmatian water evaluation indices. Water Environment Research, 75(5), 388–405.

    Article  Google Scholar 

  • Steinhart, C. E., Schierow, L. J., & Chesters, G. (1981). A review of water quality and related indices, Great Lakes Environmental Planning Study contribution no 38, Water Resources Centre, University of Wisconsin, Madison, Wisconsin, 53706, USA.

  • Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology, edition (Vol. 1625). Hoboken: Wiley.

    Google Scholar 

  • Vodela, J. K., Renden, J. A., Lenz, S. D., McElhenney, W. H., & Kemppainen, B. W. (1997). Drinking water contaminants (arsenic, cadmium, lead, benzene and trichloroethylene), Interaction of contaminants with nutritional status on general performance and immune function in broiler chickens. Pollution Science, 76, 1474–1492.

    CAS  Google Scholar 

  • Voudouris, K., Panagopoulos, A., & Koumantakis, J. (2000). Multivariate statistical analysis in the assessment of hydrochemistry of the Northern Korinthia prefecture alluvial aquifer system (Peloponnese, Greece). Natural Resources Research, 9(2), 135–146.

    Article  CAS  Google Scholar 

  • World Health Organization. (2006). Guidelines for drinking water quality, recommendations (3rd ed., Vol. 1). Geneva: World Health organization.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitanya B. Pande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pande, C.B., Moharir, K.N., Singh, S.K. et al. Groundwater evaluation for drinking purposes using statistical index: study of Akola and Buldhana districts of Maharashtra, India. Environ Dev Sustain 22, 7453–7471 (2020). https://doi.org/10.1007/s10668-019-00531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00531-0

Keywords

Profiles

  1. Sudhir Kumar Singh
  2. Bloodless Dzwairo