Advertisement

Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future

  • Elias GanivetEmail author
Review
  • 115 Downloads

Abstract

Nowadays, human activities are causing an important collapse in global biodiversity while also affecting the global climate considerably. Despite historical agreements on both biodiversity conservation and climate change, humanity keeps changing the face of the planet at an increasing rate. An undisputed factor in global change is the excessive and growing human consumption. On the other hand, it seems that linking humanity’s environmental impact with population growth has been quite controversial in the international debate, as if, somehow, biodiversity loss and climate change were unconnected to it. To this purpose, this paper reviews (1) the impacts of continuing human population growth on global biodiversity and climate through the examples of food and energy production, (2) changing perceptions about population growth and (3) the potential solutions that could be used to address this issue. Despite not the only factor, the research reviewed in this paper highlights that continuing population growth plays a substantial global role in the destruction of biodiversity and in climate change, and this role urgently needs more attention in scientific, policy and public circles. Both unsustainable population levels and excessive consumption are part of the equation and must be addressed concurrently in developing and developed countries. Several non-coercive strategies are possible to address the population question, mostly through access to education and contraception, in order to empower women through the basic human right to have children by choice. In any case, although limiting population growth may not be the only solution required to fix current environmental problems, ignoring it is likely to hinder any ecologically sustainable future.

Keywords

Biodiversity loss Climate change Excessive consumption Population growth Sustainability 

Abbreviations

COP

Conference of the parties

GHG

Greenhouse gas

IPCC

International panel on climate change

Notes

Acknowledgements

I am particularly grateful to Mark Bloomberg (University of Canterbury, New Zealand), Philip Cafaro (Colorado State University, USA) and two anonymous reviewers for giving useful comments on an earlier version of the manuscript. I also record my appreciation to Alexandre Alaman, Maxime Remazeilles and Pierre Marc for constructive discussions about the topics of overpopulation and sustainability that greatly helped me in writing this paper.

References

  1. Abel, G. J., Barakat, B., Samir, K. C., & Lutz, W. (2016). Meeting the sustainable development goals leads to lower world population growth. Proceedings of the National Academy of Sciences, 113(50), 14294–14299.  https://doi.org/10.1073/pnas.1611386113.CrossRefGoogle Scholar
  2. Aleksandrowicz, L., Green, R., Joy, E. J., Smith, P., & Haines, A. (2016). The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE, 11(11), e0165797.  https://doi.org/10.1371/journal.pone.0165797.CrossRefGoogle Scholar
  3. Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  4. Baillie, J. E. M., & Cokeliss, Z. (2004). Extinctions in recent time. In J. E. M. Baillie, C. Hilton-Taylor, & S. N. Stuart (Eds.), 2004 IUCN red list of threatened species: A global species assessment (pp. 33–50). Cambridge: IUCN.Google Scholar
  5. Batavia, C., & Nelson, M. P. (2017). For goodness sake! What is intrinsic value and why should we care? Biological Conservation, 209, 366–376.  https://doi.org/10.1016/j.biocon.2017.03.003.CrossRefGoogle Scholar
  6. Baulcombe, D., Crute, I., Davies, B., Dunwell, J., Gale, M., Jones, J., et al., (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture. The Royal Society. https://royalsociety.org/topics-policy/publications/2009/reaping-benefits/.
  7. Berry, T. (2000). The great work: Our way into the future. New York: Bell Tower.Google Scholar
  8. Bloom, D. E., Canning, D., & Malaney, P. N. (2000). Population dynamics and economic growth in Asia. Population and Development Review, 26, 257–290.Google Scholar
  9. Blowfield, M. (2013). Business and sustainability. Oxford: Oxford University Press.Google Scholar
  10. Bolla, R., Bruschi, R., Davoli, F., & Cucchietti, F. (2011). Energy efficiency in the future internet: A survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Communications Surveys and Tutorials, 13(2), 223–244.  https://doi.org/10.1109/SURV.2011.071410.00073.CrossRefGoogle Scholar
  11. Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.  https://doi.org/10.1126/science.1155121.CrossRefGoogle Scholar
  12. Bongaarts, J. (2016). Development: Slow down population growth. Nature, 530(7591), 409–413.CrossRefGoogle Scholar
  13. Bradshaw, C. J., & Brook, B. W. (2014). Human population reduction is not a quick fix for environmental problems. Proceedings of the National Academy of Sciences, 111(46), 16610–16615.  https://doi.org/10.1073/pnas.1410465111.CrossRefGoogle Scholar
  14. Bradshaw, C. J., & Brook, B. W. (2015). Reply to O’Neill et al. and O’Sullivan: Fertility reduction will help, but only in the long term. Proceedings of the National Academy of Sciences, 112(6), E508–E509.  https://doi.org/10.1073/pnas.1423102112.CrossRefGoogle Scholar
  15. Brown, L. (2011). World on the edge: How to prevent environmental and economic collapse. New York, NY: W.W. Norton and Co.Google Scholar
  16. Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., & Otto-Bliesner, B. L. (2018). Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences.  https://doi.org/10.1073/pnas.1809600115.CrossRefGoogle Scholar
  17. Cafaro, P., Butler, T., Crist, E., Cryer, P., Dinerstein, E., Kopnina, H., et al. (2017). If we want a whole Earth, Nature Needs Half: A response to Büscher. Oryx, 51(3), 400.  https://doi.org/10.1017/S0030605317000072.CrossRefGoogle Scholar
  18. Cafaro, P., & Crist, E. (2012). Life on the brink: Environmentalists confront overpopulation. P. Cafaro, & E. Crist (Eds.). St. Athens: University of Georgia Press.Google Scholar
  19. Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X., Karanewsky, C. J., Yeong Ryu, H., et al. (2013). How does climate change cause extinction? Proceedings of the Royal Society B: Biological Sciences, 280(1750), 20121890.  https://doi.org/10.1098/rspb.2012.1890.CrossRefGoogle Scholar
  20. Campbell, M. M., Prata, N., & Potts, M. (2013). The impact of freedom on fertility decline. Journal of Family Planning and Reproductive Health Care, 39, 44–50.  https://doi.org/10.1136/jfprhc-2012-100405.CrossRefGoogle Scholar
  21. Cates, W., Karim, Q. A., El-Sadr, W., Haffner, D. W., Kalema-Zikusoka, G., Rogo, K., et al. (2010). Family planning and the millennium development goals. Science, 329(5999), 1603.  https://doi.org/10.1126/science.1197080.CrossRefGoogle Scholar
  22. CBD. (2010). Aichi biodiversity targets. Convention on Biological diversity. https://www.cbd.int/sp/targets/.
  23. Ceballos, G., Ehrlich, A. D., Barnosky, A., García, R. M., Pringle, T. M., & Palmer, T. M. (2015). Accelerated modern human—Induced species losses: Entering the sixth mass extinction. Science Advances., 1, e1400253.  https://doi.org/10.1126/sciadv.1400253.CrossRefGoogle Scholar
  24. Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences, 114(30), E6089–E6096.  https://doi.org/10.1073/pnas.1704949114.CrossRefGoogle Scholar
  25. Ceballos, G., García, A., & Ehrlich, P. R. (2010). The sixth extinction crisis: Loss of animal populations and species. Journal of Cosmology, 8(1821), 1821–1831.Google Scholar
  26. Chartier, S. (2018). Faut-il faire moins d’enfants pour sauver la planète? La vie. http://www.lavie.fr/actualite/ecologie/faut-il-faire-moins-d-enfants-pour-sauver-la-planete-12-10-2018-93643_8.php.
  27. Chertow, M. R. (2000). The IPAT equation and its variants. Journal of Industrial Ecology, 4(4), 13–29.  https://doi.org/10.1162/10881980052541927.CrossRefGoogle Scholar
  28. Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., & Richels, R. (2007). Scenarios of greenhouse gas emissions and atmospheric concentrations. Washington, DC: Department of Energy, Office of Biological and Environmental Research.Google Scholar
  29. Clay, J. (2011). Freeze the footprint of food. Nature, 475(7356), 287–289.  https://doi.org/10.1038/475287a.CrossRefGoogle Scholar
  30. Cleland, J. (2009). Contraception in historical and global perspective. Best Practice and Research Clinical Obstetrics and Gynaecology, 23(2), 165–176.  https://doi.org/10.1016/j.bpobgyn.2008.11.002.CrossRefGoogle Scholar
  31. Connolly, D., Lund, H., & Mathiesen, B. V. (2016). Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renewable and Sustainable Energy Reviews, 60, 1634–1653.  https://doi.org/10.1016/j.rser.2016.02.025.CrossRefGoogle Scholar
  32. Cook, N. J., Grillos, T., & Andersson, K. P. (2019). Gender quotas increase the equality and effectiveness of climate policy interventions. Nature Climate Change, 9, 330–334.CrossRefGoogle Scholar
  33. Crist, E. (2012). Abundant Earth and the population question. In P. Cafaro & E. Crist (Eds.), Life on the brink: Environmentalists confront overpopulation (pp. 141–151). Georgia: University of Georgia Press.Google Scholar
  34. Crist, E., Mora, C., & Engelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science, 356(6335), 260–264.  https://doi.org/10.1126/science.aal2011.CrossRefGoogle Scholar
  35. Curry, P. (2011). Ecological ethics: An introduction (2nd ed.). Cambridge: Polity Press.Google Scholar
  36. Custer, S., DiLorenzo, M., Masaki, T., Sethi, T., & Harutyunyan, A. (2018). Listening to leaders 2018: Is development cooperation tuned-in or tone-deaf?. Williamsburg, VA: AidData at William and Mary.Google Scholar
  37. Daily, G. C. (1999). Developing a scientific basis for managing Earth’s life support systems. Conservation Ecology, 3(2), 14.CrossRefGoogle Scholar
  38. Daily, G. C., Ehrlich, A. H., & Ehrlich, P. R. (1994). Optimum human population size. Population and Environment, 15(6), 469–475.  https://doi.org/10.1007/BF02211719.CrossRefGoogle Scholar
  39. Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., et al. (2009). Ecosystem services in decision making: Time to deliver. Frontiers in Ecology and the Environment, 7(1), 21–28.  https://doi.org/10.1890/080025.CrossRefGoogle Scholar
  40. Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R. T., Molnár, Z., et al. (2018). Assessing nature’s contributions to people. Science, 359(6373), 270–272.  https://doi.org/10.1126/science.aap8826.CrossRefGoogle Scholar
  41. Dietz, R., & O’Neill, D. (2013). Enough is enough: Building a sustainable economy in a world of finite resources. San Francisco, CA: Berrett-Koehler Publishers.CrossRefGoogle Scholar
  42. Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., et al. (2017). An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67(6), 534–545.  https://doi.org/10.1093/biosci/bix014.CrossRefGoogle Scholar
  43. Eder, J., Goujon, A., Haplichnik, T. K. C. S., Lutz, W., & Potančokova, M. (2015). Global human capital data sheet 2015. Vienna: Wittgenstein Centre for Demography and Global Human Capital.Google Scholar
  44. Ehrlich, P. R., & Ehrlich, A. H. (2014). It’s the numbers, stupid! In J. Goldie & K. Betts (Eds.), Sustainable futures: Linking population, resources and the environment. Canberra: CSIRO Publishing.Google Scholar
  45. Ehrlich, P. R., & Holdren, J. P. (1971). Impact of population growth. Science, 171(3977), 1212–1217.CrossRefGoogle Scholar
  46. Ehrlich, P. R., & Holdren, J. P. (1972). A bulletin dialogue on the ‘Closing Circle’: Critique: One dimensional ecology. Bulletin of the Atomic Scientists, 28(5), 16–27.  https://doi.org/10.1080/00963402.1972.11457930.CrossRefGoogle Scholar
  47. Ellis, E. C. (2013). Overpopulation is not the problem. The New York Times. http://www.nytimes.com/2013/09/14/opinion/overpopulation-isnot-the-problem.html?_r=0.
  48. Engelman, R. (2011). An end to population growth: Why family planning is key to a sustainable future. Solutions for a Sustainable and Desirable Future, 2(3), 32–41.Google Scholar
  49. Engelman, R. (2016a). Nine population strategies to stop short of 9 billion. In H. Washington & P. Twomey (Eds.), A future beyond growth (pp. 56–66). London: Routledge.Google Scholar
  50. Engelman, R. (2016b). Africa’s population will soar dangerously unless women are more empowered. Scientific American. www.scientificamerican.com/article/africa-s-population-will-soar-dangerously-unlesswomen-are-more-empowered/.
  51. Engelman, R., Terefe, Y. G., & Markham, V. (2016). Family planning and environmental sustainability: Assessing the science. New York: Wordwatch Institute.Google Scholar
  52. Estrada, A., Garber, P. A., Rylands, A. B., Roos, C., Fernandez-Duque, E., Di Fiore, A., et al. (2017). Impending extinction crisis of the world’s primates: Why primates matter. Science Advances, 3(1), e1600946.  https://doi.org/10.1126/sciadv.1600946.CrossRefGoogle Scholar
  53. Ezeh, A. C., Bongaarts, J., & Mberu, B. (2012). Global population trends and policy options. The Lancet, 380(9837), 142–148.  https://doi.org/10.1016/S0140-6736(12)60696-5.CrossRefGoogle Scholar
  54. FAO. (2009). How to feed the world: Global agriculture towards 2050. Rome: Food and Agriculture Organization of the United Nations. www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf.
  55. FAO. (2019). The state of the world’s biodiversity for food and agriculture. In J. Bélanger & D. Pilling (Eds.), Food and agriculture organization of the United Nations (p. 572). Rome: Commission on Genetic Resources for Food and Agriculture Assessments.Google Scholar
  56. FAOSTAT. (2009). Statistical databases. Rome: Food and agriculture organization of the United Nations.Google Scholar
  57. Fletcher, R., Breitlin, J., & Puleo, V. (2014). Barbarian hordes: The overpopulation scapegoat in international development discourse. Third World Quarterly, 35(7), 1195–1215.  https://doi.org/10.1080/01436597.2014.926110.CrossRefGoogle Scholar
  58. Foley, J. A. (2014). A five-step plan to feed the world. National Geographic, 225(5), 26–58.Google Scholar
  59. Foley, J. A. (2015). Can we feed the world and sustain the planet? Scientific American, 24, 84–89.CrossRefGoogle Scholar
  60. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science, 309(5734), 570–574.  https://doi.org/10.1126/science.1111772.CrossRefGoogle Scholar
  61. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337442.  https://doi.org/10.1038/nature10452.CrossRefGoogle Scholar
  62. Geist, H. J., & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience, 52(2), 143–150.  https://doi.org/10.1641/0006-3568(2002)052%5b0143:PCAUDF%5d2.0.CO;2.CrossRefGoogle Scholar
  63. Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., et al. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 16732–16737.  https://doi.org/10.1073/pnas.0910275107.CrossRefGoogle Scholar
  64. Gil Pérez, D., & Vilches, A. (2017). El olvido de la demografía en los estudios de Sostenibilidad. Ápice. Revista de Educación Científica, 1(2), 1–17.  https://doi.org/10.17979/arec.2017.1.2.3074.CrossRefGoogle Scholar
  65. Götmark, F., Cafaro, P., & O’Sullivan, J. (2018). Aging human populations: Good for us, good for the Earth. Trends in Ecology and Evolution, 33(11), 851–862.  https://doi.org/10.1016/j.tree.2018.08.015.CrossRefGoogle Scholar
  66. Guillebaud, J. (2016). Voluntary family planning to minimise and mitigate climate change. Bmj, 353, i2102.  https://doi.org/10.1136/bmj.i2102.CrossRefGoogle Scholar
  67. Halfon, S. (2007). The Cairo consensus: Demographic surveys, women’s empowerment, and regime change in population policy. New York: Lexington Books.Google Scholar
  68. Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., et al. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12(10), e0185809.  https://doi.org/10.1371/journal.pone.0185809.CrossRefGoogle Scholar
  69. Hansen, J., & Gale, F. (2014). China in the next decade: Rising meat demand and growing imports of feed. Amber Waves, 7. www.ers.usda.gov/amber-waves/2014/april/china-in-thenext-decade-rising-meat-demand-and-growing-imports-of-feed/.
  70. Hansen, J., Kharecha, P., Sato, M., Masson-Delmotte, V., Ackerman, F., Beerling, D. J., et al. (2013). Assessing “dangerous climate change”: Required reduction of carbon emissions to protect young people, future generations and nature. PLoS ONE, 8(12), e81648.  https://doi.org/10.1371/journal.pone.0081648.CrossRefGoogle Scholar
  71. Harter, D. E., Irl, S. D., Seo, B., Steinbauer, M. J., Gillespie, R., Triantis, K. A., et al. (2015). Impacts of global climate change on the floras of oceanic islands—Projections, implications and current knowledge. Perspectives in Plant Ecology, Evolution and Systematics, 17(2), 160–183.  https://doi.org/10.1016/j.ppees.2015.01.003.CrossRefGoogle Scholar
  72. Heard, B. P., Brook, B. W., Wigley, T. M. I., & Bradshaw, C. J. A. (2017). Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renewable and Sustainable Energy Reviews, 76, 1122–1133.  https://doi.org/10.1016/j.rser.2017.03.114.CrossRefGoogle Scholar
  73. Henderson, K., & Loreau, M. (2018). How ecological feedbacks between human population and land cover influence sustainability. PLoS Computational Biology, 14(8), e1006389.  https://doi.org/10.1371/journal.pcbi.1006389.CrossRefGoogle Scholar
  74. Hulme, M. (2009). Why we disagree about climate change: Understanding controversy, inaction and opportunity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  75. Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., et al. (2013). Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 6(4), 268–273.  https://doi.org/10.1038/ngeo1741.CrossRefGoogle Scholar
  76. IAASTD. (2009). Agriculture at a crossroads: The global report. Washington, DC: Island Press.Google Scholar
  77. INPE. (2018). INPE estimated 7900 km 2 of shallow cut deforestation in the Amazon in 2018. http://www.inpe.br/noticias/noticia.php?Cod_Noticia=4957.
  78. International Energy Agency. (2015). Key world energy statistics. Paris: OECD/IEA.Google Scholar
  79. IPBES. (2018). Biodiversity and nature’s contributions continue dangerous decline, scientists warn. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Media release. https://www.ipbes.net/news/media-release-updated-biodiversity-nature%E2%80%99s-contributions-continue-dangerous-decline-scientists#_ftn1.
  80. IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services.Google Scholar
  81. IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  82. IPCC. (2013). Climate change 2013: The physical science basis: Working groups I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  83. IPCC. (2018). Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In: V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, et al. (Eds.). World meteorological organization. Geneva.Google Scholar
  84. IUCN. (2018). The IUCN red list of threatened species, version 2018 (IUCN, 2018). http://www.iucnredlist.org.
  85. Jacobson, M. Z., & Delucchi, M. A. (2011). Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, 39(3), 1154–1169.  https://doi.org/10.1016/j.enpol.2010.11.040.CrossRefGoogle Scholar
  86. Jacobson, M. Z., Delucchi, M. A., Cameron, M. A., & Frew, B. A. (2015). Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proceedings of the National Academy of Sciences, 112(49), 15060–15065.  https://doi.org/10.1073/pnas.1510028112.CrossRefGoogle Scholar
  87. Kaidbey, M., & Engelman, R. (2017). Our bodies, our future: Expanding comprehensive sexuality education. EarthEd: Rethinking education on a changing planet (pp. 179–189). Washington, DC: Island Press.CrossRefGoogle Scholar
  88. Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352, 9–20.  https://doi.org/10.1016/j.foreco.2015.06.014.CrossRefGoogle Scholar
  89. Kemp, L. (2017). Limiting the climate impact of the Trump administration. Palgrave Communications, 3(1), 9.  https://doi.org/10.1057/s41599-017-0003-6.CrossRefGoogle Scholar
  90. Kharas, H. (2017). The unprecedented expansion of the global middle class: An update. Brookings Global Economy and Development. www.brookings.edu/wp-content/uploads/2017/02/global_20170228_global-middle-class.pdf.
  91. Klein Goldewijk, K., Beusen, A., Van Drecht, G., & De Vos, M. (2011). The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20(1), 73–86.  https://doi.org/10.1111/j.1466-8238.2010.00587.x.CrossRefGoogle Scholar
  92. Kopnina, H., & Washington, H. (2016). Discussing why population growth is still ignored or denied. Chinese Journal of Population Resources and Environment, 14(2), 133–143.  https://doi.org/10.1080/10042857.2016.1149296.CrossRefGoogle Scholar
  93. Laurance, W. F., Useche, D. C., Rendeiro, J., Kalka, M., Bradshaw, C. J., Sloan, S. P., et al. (2012). Averting biodiversity collapse in tropical forest protected areas. Nature, 489, 290–294.  https://doi.org/10.1038/nature11318.CrossRefGoogle Scholar
  94. Laybourn-Langton, L., Rankin, L., & Baxter, D. (2019). This is a crisis: Facing up to the age of environmental breakdown. IPPR. http://www.ippr.org/research/publications/age-of-environmental-breakdown.
  95. Le Quéré, C., Andreaw, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., et al. (2018). Global carbon budget 2018. Earth System Science Data, 10, 1–54.  https://doi.org/10.5194/essd-10-2141-2018.CrossRefGoogle Scholar
  96. Lee, R., & Mason, A. (2014). Is low fertility really a problem? Population aging, dependency, and consumption. Science, 346(6206), 229–234.  https://doi.org/10.1126/science.1250542.CrossRefGoogle Scholar
  97. Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349(6250), 827–832.  https://doi.org/10.1126/science.aaa9932.CrossRefGoogle Scholar
  98. Lister, B. C., & Garcia, A. (2018). Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences, 115(44), E10397–E10406.  https://doi.org/10.1073/pnas.1722477115.CrossRefGoogle Scholar
  99. Lowe, I. (2016). Population. Better not bigger. In H. Washington & P. Twomey (Eds.), A future beyond growth: Towards a steady state economy (pp. 21–31). London: Routledge.Google Scholar
  100. Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., & Nobre, C. A. (2008). Climate change, deforestation, and the fate of the Amazon. Science, 319(5860), 169–172.  https://doi.org/10.1126/science.1146961.CrossRefGoogle Scholar
  101. Malthus, T. R. (1798). An essay on the principle of population, as it affects the future improvement of society. With remarks on the speculations of Mr. Godwin, M. Condorcet, and other writers. 1st edn, London: J. Johnson, in St. Paul’s Church-yard. https://archive.org/details/essayonprincipl00malt/page/n7.
  102. Mason, I. G., Page, S. C., & Williamson, A. G. (2013). Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand. Energy Policy, 60, 324–333.  https://doi.org/10.1016/j.enpol.2013.05.032.CrossRefGoogle Scholar
  103. Maverick, T. (2014). China’s hunger for soy to exceed global supply. Wall Street Daily. www.wallstreetdaily.com/2014/11/11/china-soybean-futures/.
  104. Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536(7615), 143–145.CrossRefGoogle Scholar
  105. Mayhew, S. H., & Colbourn, T. (2015). Population growth. In J. Waage & C. Yap (Eds.), Thinking beyond sectors for sustainable development (pp. 37–44). New York: Ubiquity Press.CrossRefGoogle Scholar
  106. MEA. (2005). Ecosystems and human well-being: Biodiversity synthesis. Millennium ecosystem assessment. Washington, DC: World Resources Institute. www.millenniumassessment.org/documents/document.354.aspx.pdf.
  107. Meffe, G. K. (1994). Human population control: The missing awareness. Conservation Biology, 8(1), 310–313.  https://doi.org/10.1046/j.1523-1739.1994.08010310.x.CrossRefGoogle Scholar
  108. Meyer, J.-Y., & Butaud, J.-F. (2009). The impacts of rats on the endangered native flora of French Polynesia (Pacific Islands): Drivers of plant extinction or coup de grâce species? Biological Invasions, 11, 1569–1585.  https://doi.org/10.1007/s10530-008-9407-y.CrossRefGoogle Scholar
  109. Meyer, W. B., & Turner, B. L. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23(1), 39–61.  https://doi.org/10.1146/annurev.es.23.110192.000351.CrossRefGoogle Scholar
  110. MNHN. (2018). Le printemps 2018 s’annonce silencieux dans les campagnes françaises. Muséum National d’Histoire Naturelle. https://www.mnhn.fr/fr/recherche-expertise/actualites/printemps-2018-s-annonce-silencieux-campagnes-francaises.
  111. Mora, C. (2014). Revisiting the environmental and socioeconomic effects of population growth: A fundamental but fading issue in modern scientific, public, and political circles. Ecology and Society, 19(1), 38.CrossRefGoogle Scholar
  112. Mora, C., Rollins, R. L., Taladay, K., Kantar, M. B., Chock, M. K., Shimada, M., et al. (2018a). Bitcoin emissions alone could push global warming above 2 °C. Nature Climate Change, 8(11), 931.  https://doi.org/10.1038/s41558-018-0321-8.CrossRefGoogle Scholar
  113. Mora, C., & Sale, P. F. (2011). Ongoing global biodiversity loss and the need to move beyond protected areas: A review of the technical and practical shortcomings of protected areas on land and sea. Marine Ecology Progress Series, 434, 251–266.  https://doi.org/10.3354/meps09214.CrossRefGoogle Scholar
  114. Mora, C., Spirandelli, D., Franklin, E. C., Lynham, J., Kantar, M. B., Miles, W., et al. (2018b). Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature Climate Change.  https://doi.org/10.1038/s41558-018-0315-6.CrossRefGoogle Scholar
  115. Mora, C., & Zapata, F. A. (2013). 17 Anthropogenic footprints on biodiversity. In K. Krohde (Ed.), The balance of nature and human impact (pp. 239–257). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  116. Moritz, C., & Agudo, R. (2013). The future of species under climate change: Resilience or decline? Science, 341, 504–508.  https://doi.org/10.1126/science.1237190.CrossRefGoogle Scholar
  117. Muller, A., Schader, C., El-Hage Scialabba, N., Brüggemann, J., Isensee, A., Erb, K.-H., et al. (2017). Strategies for feeding the world more sustainably with organic agriculture. Nature Communication, 8, 1290.  https://doi.org/10.1038/s41467-017-01410-w.CrossRefGoogle Scholar
  118. Murtaugh, P. A., & Schlax, M. G. (2009). Reproduction and the carbon legacies of individuals. Global Environmental Change, 19(1), 14–20.  https://doi.org/10.1016/j.gloenvcha.2008.10.007.CrossRefGoogle Scholar
  119. Musters, C. J. M., De Graaf, H. J., & Ter Keurs, W. J. (2000). Can protected areas be expanded in Africa? Science, 287(5459), 1759–1760.  https://doi.org/10.1126/science.287.5459.1759.CrossRefGoogle Scholar
  120. Nakicenovic, N., & Swart, R. (2000). Emissions scenarios. Cambridge: Special Report of the Intergovernmental Panel on Climate Change.Google Scholar
  121. Nelson, G., Bogard, J., Lividini, K., Arsenault, J., Riley, M., Sulser, T. B., et al. (2018). Income growth and climate change effects on global nutrition security to mid-century. Nature Sustainability, 1(12), 773–781.  https://doi.org/10.1038/s41893-018-0192-z.CrossRefGoogle Scholar
  122. Newton, K., Cote, I. M., Pilling, G. M., Jennings, S., & Dulvy, N. K. (2007). Current and future sustainability of island coral reef fisheries. Current Biology, 17(7), 655–658.  https://doi.org/10.1016/j.cub.2007.02.054.CrossRefGoogle Scholar
  123. Noss, R. F., Dobson, A. P., Baldwin, R., Beier, P., Davis, C. R., Dellasala, D. A., et al. (2012). Bolder thinking for conservation. Conservation Biology, 26(1), 1–4.  https://doi.org/10.1111/j.1523-1739.2011.01738.x.CrossRefGoogle Scholar
  124. O’Sullivan, J. N. (2015). Population stabilization potential and its benefits underestimated. Proceedings of the National Academy of Sciences, 112(6), E507.  https://doi.org/10.1073/pnas.1422507112.CrossRefGoogle Scholar
  125. Olah, G. A., Goeppert, A., & Prakash, G. S. (2011). Beyond oil and gas: The methanol economy. Weinheim: Wiley.Google Scholar
  126. Parodi, A., Leip, A., De Boer, I. J. M., Slegers, P. M., Ziegler, F., Temme, E. H. M., et al. (2018). The potential of future foods for sustainable and healthy diets. Nature Sustainability, 1(12), 782.  https://doi.org/10.1038/s41893-018-0189-7.CrossRefGoogle Scholar
  127. Pearce, F. (2008). Has the population bomb been defused? Yale School of Forestry and Environmental Studies, Yale, USA. http://e360.yale.edu/feature/the_population_bomb_has_it_been_defused/2042/.
  128. Pingali, P. L. (2012). Green revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302–12308.  https://doi.org/10.1073/pnas.0912953109.CrossRefGoogle Scholar
  129. Pinheiro, H. T., Teixeira, J. B., Francini-Filho, R. B., Soares-Gomes, A., Ferreira, C. E. L., & Rocha, L. A. (2018). Hope and doubt for the world’s marine ecosystems. Perspectives in Ecology and Conservation.  https://doi.org/10.1016/j.pecon.2018.11.001.CrossRefGoogle Scholar
  130. Potts, M. (2009). Where next? Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 3115–3124.  https://doi.org/10.1098/rstb.2009.0181.CrossRefGoogle Scholar
  131. Prata, N. (2009). Making family planning accessible in resource-poor settings. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1532), 3093–3099.  https://doi.org/10.1098/rstb.2009.0172.CrossRefGoogle Scholar
  132. Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G., et al. (2007). Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences, 104(24), 10288–10293.  https://doi.org/10.1073/pnas.0700609104.CrossRefGoogle Scholar
  133. Ravallion, M. (2009). The developing world’s bulging (but vulnerable) “middle class”. New York: The World Bank.CrossRefGoogle Scholar
  134. Raven, P., Chase, J., & Pires, J. (2011). Introduction to special issue on biodiversity. American Journal of Botany, 98(3), 333–335.  https://doi.org/10.3732/ajb.1100055.CrossRefGoogle Scholar
  135. Rawe, K., Dunford, A., Stewart, J., Espey, J., & Stoeckel, J. (2012). Save the children. Every woman’s right. www.savethechildren.org.uk/sites/default/files/docs/Every-Woman-Right-low-res-2.pdf.
  136. Ripple, W. J., Smith, P., Haberl, H., Montzka, S. A., McAlpine, C., & Boucher, D. H. (2014). Ruminants, climate change and climate policy. Nature Climate Change, 4, 2–5.  https://doi.org/10.1038/nclimate2081.CrossRefGoogle Scholar
  137. Ripple, W. J., Wolf, C., Newsome, T. M., Galetti, M., Alamgir, M., Crist, E., et al. (2017). World scientists’ warning to humanity: A second notice. Bioscience, 67(12), 1026–1028.  https://doi.org/10.1093/biosci/bix125.CrossRefGoogle Scholar
  138. Sánchez-Bayo, F., & Wyckhuys, K. A. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8–27.  https://doi.org/10.1016/j.biocon.2019.01.020.CrossRefGoogle Scholar
  139. Sanderson, W., & Scherbov, S. (2010). Remeasuring aging. Science, 329, 1287–1288.  https://doi.org/10.1126/science.1193647.CrossRefGoogle Scholar
  140. Sayre, N. F. (2008). The genesis, history, and limits of carrying capacity. Annals of the Association of American Geographers, 98(1), 120–134.  https://doi.org/10.1080/00045600701734356.CrossRefGoogle Scholar
  141. Schwarzer, S., Witt, R., & Zommers, A. (2012). Growing greenhouse gas emissions due to meat production. Environment Programme of the United Nations. https://na.unep.net/geas/getuneppagewitharticleidscript.php?article_id = 92.
  142. Sedgh, G., Singh, S., & Hussain, R. (2014). Intended and unintended pregnancies worldwide in 2012 and recent trends. Studies in Family Planning, 45(3), 301–314.  https://doi.org/10.1111/j.1728-4465.2014.00393.x.CrossRefGoogle Scholar
  143. Shao, W. (2018). Can 2018’s extreme weather convince skeptics that the climate is changing? The Washington post. https://www.washingtonpost.com/news/monkey-cage/wp/2018/12/07/can-2018s-extreme-weather-persuade-skeptics-that-the-climate-is-changing/?noredirect=on&utm_term=.bc680a640c89.
  144. Sheppard, C. (2014). Famines, food insecurity and coral reef ‘Ponzi’ fisheries. Marine Pollution Bulletin, 1(84), 1–4.  https://doi.org/10.1016/j.marpolbul.2014.04.048.CrossRefGoogle Scholar
  145. Sinding, S. W. (2000). The great population debates: How relevant are they for the 21st century? American Journal of Public Health, 90(12), 1841–1845.CrossRefGoogle Scholar
  146. Singer, S., Denruyter, J. P., & Yener, D. (2017). The energy report: 100% renewable energy by 2050. Towards 100% Renewable Energy, 2011, 379–383.CrossRefGoogle Scholar
  147. Singh, S., Darroch, J. E., & Ashford, L. S. (2014). Adding it up: The costs and benefits of investing in sexual and reproductive health. New York, NY: Guttmacher Institute.Google Scholar
  148. Smeeding, T. M. (2014). Adjusting to the fertility bust. Science, 346(6206), 163–164.  https://doi.org/10.1126/science.1260504.CrossRefGoogle Scholar
  149. Smith, P., Haberl, H., Popp, A., Erb, K. H., Lauk, C., Harper, R., et al. (2013). How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19(8), 2285–2302.  https://doi.org/10.1111/gcb.12160.CrossRefGoogle Scholar
  150. Smith, K. R., Woodward, A., Campbell-Lendrum, D., et al. (2014). Human health: Impacts, adaptation, and co-benefits. Section 11.9.2: Access to reproductive health services. In C. B. Field, V. R. Barros, D. J. Dokken, et al. (Eds.), Climate change 2014: Impacts adaptation, and vulnerability Part A: Global and sectoral aspects. Cambridge: Cambridge University Press.Google Scholar
  151. Spears, D. (2015). Smaller human population in 2100 could importantly reduce the risk of climate catastrophe. Proceedings of the National Academy of Sciences, 112(18), E2270.  https://doi.org/10.1073/pnas.1501763112.CrossRefGoogle Scholar
  152. Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., et al. (2018). Options for keeping the food system within environmental limits. Nature, 562, 519–525.  https://doi.org/10.1038/s41586-018-0594-0.CrossRefGoogle Scholar
  153. Springmann, M., Godfray, H. C. J., Rayner, M., & Scarborough, P. (2016). Analysis and valuation of the health and climate change cobenefits of dietary change. Proceedings of the National Academy of Sciences, 113(15), 4146–4151.  https://doi.org/10.1073/pnas.1523119113.CrossRefGoogle Scholar
  154. Staples, W., & Cafaro, P. (2012). For a species right to exist. In P. Cafaro & E. Crist (Eds.), Life on the brink: Environmentalists confront overpopulation (pp. 283–300). Georgia: University of Georgia Press.Google Scholar
  155. Steckel, J. C., Brecha, R. J., Jakob, M., Strefler, J., & Luderer, G. (2013). Development without energy? Assessing future scenarios of energy consumption in developing countries. Ecological Economics, 90, 53–67.  https://doi.org/10.1016/j.ecolecon.2013.02.006.CrossRefGoogle Scholar
  156. Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855.  https://doi.org/10.1126/science.1259855.CrossRefGoogle Scholar
  157. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., & de Haan, C. (2006). Livestock’s long shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations. www.fao.org/docrep/010/a0701e/a0701e00.HTM.
  158. Teske, S., Muth, J., Sawyer, S., Pregger, T., Simon, S., Naegler T., et al. (2012) Energy [r]evolution. World energy scenario, 4th ed. Amsterdam: Greenpeace: Global Wind Energy Council & European Renewable Energy Council; 2012. [16] Lund H, Mathiesen BV. Energy system analysis of 100% renewable.Google Scholar
  159. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.  https://doi.org/10.1038/nature02121.CrossRefGoogle Scholar
  160. Tilman, D., Fargione, J., Wolff, B., Dantonio, C., Dobson, A., Howarth, R., et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292(5515), 281–284.  https://doi.org/10.1126/science.1057544.CrossRefGoogle Scholar
  161. UNCED. (1992). Declaration of the UN conference on environment and development. In Report of the United Nations conference on environment and development. Rio de Janiero.Google Scholar
  162. UNEP. (2018). The emissions gap report 2018. Nairobi: United Nations Environment Programme.Google Scholar
  163. UNFCCC. (2015). Adoption of the Paris agreement. Geneva: United Nations Office.Google Scholar
  164. United Nations. (2019). World population prospects 2019: Highlights (ST/ESA/SER.A/423). Department of Economic and Social Affairs, Population Division.Google Scholar
  165. Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571–573.  https://doi.org/10.1126/science.aaa4984.CrossRefGoogle Scholar
  166. Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe’er, G., Singer, A., et al. (2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), aad8466.  https://doi.org/10.1126/science.aad8466.CrossRefGoogle Scholar
  167. USDE. (2015). TA 61: Industrial process heating systems. Washington, DC: Quadrennial Technology Review. US Department of Energy.Google Scholar
  168. USGCRP. (2018). Impacts, risks, and adaptation in the United States: Fourth National Climate Assessment. In D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, & B. C. Stewart (Eds.), Volume II: Report-in-brief. Washington, DC: US Global Change Research Program.Google Scholar
  169. Vijay, V., Pimm, S. L., Jenkins, C. N., & Smith, S. J. (2016). The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE, 11(7), e0159668.  https://doi.org/10.1371/journal.pone.0159668.CrossRefGoogle Scholar
  170. Washington, H. (1991). Ecosolutions: Solving environmental problems for the world and Australia. Tea Gardens: Boobook Publications.Google Scholar
  171. Washington, H. (2013). Human dependence on nature: How to help solve the environmental crisis. London: Earthscan.CrossRefGoogle Scholar
  172. Washington, H. (2015). Demystifying sustainability: Towards real solutions. London: Routledge.CrossRefGoogle Scholar
  173. Washington, H. (2018). A sense of wonder towards nature: Healing the planet through belonging. London: Routledge.  https://doi.org/10.4324/9780429490910.CrossRefGoogle Scholar
  174. Washington, H., Chapron, G., Kopnina, H., Curry, P., Gray, J., & Piccolo, J. J. (2018). Foregrounding ecojustice in conservation. Biological Conservation, 228, 367–374.  https://doi.org/10.1016/j.biocon.2018.09.011.CrossRefGoogle Scholar
  175. Washington, H., Taylor, B., Kopnina, H., Cryer, P., & Piccolo, J. J. (2017). Why ecocentrism is the key pathway to sustainability. Ecological Citizen, 1, 35–41.Google Scholar
  176. Watson, J. E., Venter, O., Lee, J., Jones, K. R., Robinson, J. G., Possingham, H. P., et al. (2018). Protect the last of the wild. Nature, 563, 27–30.CrossRefGoogle Scholar
  177. Wigley, T. M. L. (2011). Coal to gas: The influence of methane leakage. Climatic Change, 108, 601–608.  https://doi.org/10.1007/s10584-011-0217-3.CrossRefGoogle Scholar
  178. Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., et al. (2019). Food in the anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet Commissions.  https://doi.org/10.1016/S0140-6736(18)31788-4.CrossRefGoogle Scholar
  179. Wilson, E. O. (2016). Half-earth: Our planet’s fight for life. New York: WW Norton and Company.Google Scholar
  180. World Bank. (2011). Getting to equal: Promoting gender equality through human development. Washington, DC: World Bank.CrossRefGoogle Scholar
  181. World Resources Institute. (2014). Climate analysis indicators tool (CAIT) version 2.0. Washington, DC: World Resources Institute.Google Scholar
  182. Wu, Y. (2013). More aid + more people does not equate to less poverty. www.populationmatters.org/documents/aid_people.pdf.
  183. WWF. (2018). Living planet report—2018: Aiming higher. In: M. Grooten, R. E. A. Almond (Eds.). Gland: WWF.Google Scholar
  184. Wynes, S., & Nicholas, K. A. (2017). The climate mitigation gap: Education and government recommendations miss the most effective individual actions. Environmental Research Letters, 12(7), 074024.  https://doi.org/10.1088/1748-9326/aa7541.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.BayonneFrance

Personalised recommendations