Skip to main content
Log in

Sequential treatment of paper mill effluent with modified Fenton oxidation and bioflocculation

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Pollutants emerging from the effluents of paper mills eventually destroy the environment of our ecosystem. To find a proper solution of it, a cost-effective and environmentally benign technique is proposed here to remediate contaminants present in the effluent of paper mill in a sequential steps using advanced oxidation processes including Fenton reaction (FO) (Fe(II)/H2O2), modified Fenton oxidation (MFO) (Fe(II)/Zn(II)/H2O2) and biological flocculation process. A comparison and compilation among these techniques were carried out on the basis of the percentage removal of chemical oxygen demand (COD) as well as the observed degradation pattern in gas chromatography–mass spectrometry. Results revealed that MFO could remove ≥ 90% of COD at ~ 90 min, whereas FO could eliminate ≥ 80% COD at ~ 120 min. Further, the bioflocculation technique was found to reduce the heavy metal contents such as Fe, Mn, Zn, Co, Cd and Pb by ≥ 60%. In the sequential treatment process, lignin, phenolic and colour contents were also found to be reduced by ~ 84% ~ 97% and ~ 96%, respectively. Again, the bioassay tests were performed to verify the toxicity reduction in the industrial effluent after the application of the sequential treatment process. This study demonstrates that the sequential treatment technique could be an effective alternative for the treatment of paper mill effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BF:

Bioflocculation test

FBF:

Combination of Fenton oxidation and bioflocculant

FO:

Fenton oxidation

MFBF:

Combination of modified Fenton oxidation and bioflocculant test

MFO:

Modified Fenton oxidation

PL:

Permissible limits

PN:

Peak number

RT:

Retention time

UT:

Untreated sample

References

  • Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology,98(12), 2243–2257.

    CAS  Google Scholar 

  • Andersson, T., Förlin, L., Härdig, J., & Larsson, Å. (1988). Physiological disturbances in fish living in coastal water polluted with bleached kraft pulp mill effluents. Canadian Journal of Fisheries and Aquatic Sciences,45(9), 1525–1536.

    CAS  Google Scholar 

  • Association APH, Association AWW, Federation WPC, & Federation WE. (1915). Standard methods for the examination of water and wastewater (Vol. 2). ‎Washington, DC: American Public Health Association.

    Google Scholar 

  • Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering,2(1), 557–572.

    CAS  Google Scholar 

  • Batta, N., Subudhi, S., Lal, B., & Devi, A. (2013). Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity. Indian Journal of Experimental Biology,51, 1004–1011.

    CAS  Google Scholar 

  • Benatti, C. T., da Costa, A. C. S., & Tavares, C. R. G. (2009). Characterization of solids originating from the Fenton’s process. Journal of Hazardous Materials,163(2–3), 1246–1253.

    CAS  Google Scholar 

  • Benitez, F., Acero, J., Real, F., Rubio, F., & Leal, A. (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Research,35(5), 1338–1343.

    CAS  Google Scholar 

  • Bianco, B., De Michelis, I., & Vegliò, F. (2011). Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method. Journal of Hazardous Materials,186(2–3), 1733–1738.

    CAS  Google Scholar 

  • Buragohain, S., Deka, D. C., & Devi, A. (2013). Fenton oxidation and combined Fenton-microbial treatment for remediation of crude oil contaminated soil in Assam-India. Environmental Science: Processes and Impacts,15(10), 1913–1920.

    CAS  Google Scholar 

  • Calace, N., Di Muro, A., Nardi, E., Petronio, B., & Pietroletti, M. (2002). Adsorption isotherms for describing heavy-metal retention in paper mill sludges. Industrial and Engineering Chemistry Research,41(22), 5491–5497.

    CAS  Google Scholar 

  • Catalkaya, E. C., & Kargi, F. (2007). Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study. Journal of Hazardous Materials,139(2), 244–253.

    CAS  Google Scholar 

  • Catalkaya, E. C., & Kargi, F. (2008). Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals. Journal of Environmental Management,87(3), 396–404.

    CAS  Google Scholar 

  • Chandra, R., Raj, A., Yadav, S., & Patel, D. K. (2009). Reduction of pollutants in pulp paper mill effluent treated by PCP-degrading bacterial strains. Environmental Monitoring and Assessment,155(1–4), 1.

    CAS  Google Scholar 

  • Chu, H., Wang, Z., & Liu, Y. (2016). Application of modified bentonite granulated electrodes for advanced treatment of pulp and paper mill wastewater in three-dimensional electrode system. Journal of Environmental Chemical Engineering,4(2), 1810–1817.

    CAS  Google Scholar 

  • CPPA, C. P., & Association, P. (1974). Technical section standard method H5P Montreal. Canada.

  • De los Santos Ramos, W., Poznyak, T., & Chairez, I. (2009). Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. Journal of Hazardous Materials,169(1–3), 428–434.

    CAS  Google Scholar 

  • Deng, Y., & Englehardt, J. D. (2006). Treatment of landfill leachate by the Fenton process. Water Research,40(20), 3683–3694.

    CAS  Google Scholar 

  • Diez, M., Mora, M., & Videla, S. (1999). Adsorption of phenolic compounds and color from bleached Kraft mill effluent using allophanic compounds. Water Research,33(1), 125–130.

    CAS  Google Scholar 

  • Dutta, J., Handique, P. J., & Thakur, D. (2015). Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Frontiers in Microbiology,6, 1252.

    Google Scholar 

  • Dutta, K., Mukhopadhyay, S., Bhattacharjee, S., & Chaudhuri, B. (2001). Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materials,84(1), 57–71.

    CAS  Google Scholar 

  • Ekstrand, E.-M., Larsson, M., Truong, X.-B., Cardell, L., Borgström, Y., Björn, A., et al. (2013). Methane potentials of the Swedish pulp and paper industry—A screening of wastewater effluents. Applied Energy,112, 507–517.

    CAS  Google Scholar 

  • Eskelinen, K., Särkkä, H., Kurniawan, T. A., & Sillanpää, M. E. (2010). Removal of recalcitrant contaminants from bleaching effluents in pulp and paper mills using ultrasonic irradiation and Fenton-like oxidation, electrochemical treatment, and/or chemical precipitation: A comparative study. Desalination,255(1–3), 179–187.

    CAS  Google Scholar 

  • Fazeli, M. S., Sathyanarayan, S., Satish, P., & Muthanna, L. (1991). Effect of paper mill effluents on accumulation of heavy metals in coconut trees near Nanjangud, Mysore District, Karnataka, India. Environmental Geology and Water Sciences,17(1), 47–50.

    CAS  Google Scholar 

  • Fontanier, V., Farines, V., Albet, J., Baig, S., & Molinier, J. (2006). Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents. Water Research,40(2), 303–310.

    CAS  Google Scholar 

  • Forsey, S. (2004). In situ chemical oxidation of creosote/coal tar residuals: Experimental and numerical investigation.

  • Friedrich, L. C., Mendes, M. A., Silva, V. O., Zanta, C. L. P., Machulek, A., Jr., & Quina, F. H. (2012). Mechanistic implications of zinc(II) ions on the degradation of phenol by the fenton reaction. Journal of the Brazilian Chemical Society,23(7), 1372–1377.

    CAS  Google Scholar 

  • Ghaly, M. Y., Jamil, T. S., El-Seesy, I. E., Souaya, E. R., & Nasr, R. A. (2011). Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chemical Engineering Journal,168(1), 446–454.

    CAS  Google Scholar 

  • Ghanbari, F., & Moradi, M. (2016). Electrooxidation processes for dye degradation and colored wastewater treatment. London: CRC Press LLC.

    Google Scholar 

  • Ginni, G., Adishkumar, S., Rajesh Banu, J., & Yogalakshmi, N. (2014). Treatment of pulp and paper mill wastewater by solar photo-Fenton process. Desalination and Water Treatment,52(13–15), 2457–2464.

    CAS  Google Scholar 

  • Giri, J., Srivastva, A., Pachauri, S., & Srivastva, P. (2014). Effluents from paper and pulp industries and their impact on soil properties and chemical composition of plants in Uttarakhand, India. International Journal of Environment and Waste Management,1, 26–32.

    Google Scholar 

  • Golob, V., Vinder, A., & Simonič, M. (2005). Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes and Pigments,67(2), 93–97.

    CAS  Google Scholar 

  • Görke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nature Reviews Microbiology,6(8), 613.

    Google Scholar 

  • Hermosilla, D., Merayo, N., Ordóñez, R., & Blanco, Á. (2012). Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Management,32(6), 1236–1243.

    CAS  Google Scholar 

  • IS10500 B. (2012). Indian standard drinking water–Specification (second revision). New Delhi: Bureau of Indian Standards (BIS).

    Google Scholar 

  • Jaafarzadeh, N., Ghanbari, F., Ahmadi, M., & Omidinasab, M. (2017). Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: Permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate. Chemical Engineering Journal,308, 142–150.

    CAS  Google Scholar 

  • Jamil, T. S., Ghaly, M. Y., El-Seesy, I. E., Souaya, E. R., & Nasr, R. A. (2011). A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater. Journal of Hazardous Materials,185(1), 353–358.

    CAS  Google Scholar 

  • Kirchman, D. (1994). The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecology,28(2), 255–271.

    CAS  Google Scholar 

  • Krishnan, S., Rawindran, H., Sinnathambi, C., & Lim, J. (2017). Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. In IOP Conference Series: Materials Science and Engineering, 2017 (Vol. 206, No. 1, p. 012089). IOP Publishing

  • Kumar, V., Dhall, P., Naithani, S., Kumar, A., & Kumar, R. (2014). Biological approach for the treatment of pulp and paper industry effluent in sequence batch reactor. Journal of Bioremediation and Biodegradation,5(3), 1–10.

    CAS  Google Scholar 

  • Lee, J., Koh, D., Andijani, M., Saw, S., Munoz, C., Chia, S., et al. (2002). Effluents from a pulp and paper mill: a skin and health survey of children living in upstream and downstream villages. Occupational and environmental medicine, 59(6), 373–379.

    CAS  Google Scholar 

  • Leong, S. K., & Bashah, N. A. A. (2012). Kinetic study on COD removal of palm oil refinery effluent by UV-Fenton. APCBEE Procedia,3, 6–10.

    CAS  Google Scholar 

  • Li, P., He, S., He, X., & Tian, R. (2018). Seasonal hydrochemical characterization and groundwater quality delineation based on matter element extension analysis in a paper wastewater irrigation area, northwest China. Exposure and Health,10(4), 241–258.

    CAS  Google Scholar 

  • Li, P., Wu, J., Qian, H., Zhang, Y., Yang, N., Jing, L., et al. (2016). Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Exposure and Health,8(3), 331–348.

    CAS  Google Scholar 

  • Lin, J., & Harichund, C. (2012). Production and characterization of heavy-metal removing bacterial bioflocculants. African Journal of Biotechnology,11(40), 9619–9629.

    CAS  Google Scholar 

  • Lopez, A., Pagano, M., Volpe, A., & Di Pinto, A. C. (2004). Fenton’s pre-treatment of mature landfill leachate. Chemosphere,54(7), 1005–1010.

    CAS  Google Scholar 

  • Lucas, M. S., & Peres, J. A. (2009). Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study. Journal of Hazardous Materials,168(2–3), 1253–1259.

    CAS  Google Scholar 

  • Lucas, M. S., Peres, J. A., Amor, C., Prieto-Rodríguez, L., Maldonado, M. I., & Malato, S. (2012). Tertiary treatment of pulp mill wastewater by solarphoto-Fenton. Journal of hazardous materials, 225, 173–181.

    Google Scholar 

  • Mänttäri, M., Pekuri, T., & Nyström, M. (2004). NF270, a new membrane having promising characteristics and being suitable for treatment of dilute effluents from the paper industry. Journal of Membrane Science,242(1–2), 107–116.

    Google Scholar 

  • Martınez, N. S. S., Fernández, J. F., Segura, X. F., & Ferrer, A. S. (2003). Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. Journal of Hazardous Materials,101(3), 315–322.

    Google Scholar 

  • Martins, R. C., Rossi, A. F., & Quinta-Ferreira, R. M. (2010). Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement. Journal of Hazardous Materials,180(1–3), 716–721.

    CAS  Google Scholar 

  • Mishra, M., & Thakur, I. S. (2010). Isolation and characterization of alkalotolerant bacteria and optimization of process parameters for decolorization and detoxification of pulp and paper mill effluent by Taguchi approach. Biodegradation,21(6), 967–978.

    CAS  Google Scholar 

  • Mishra, S., Mohanty, M., Pradhan, C., Patra, H. K., Das, R., & Sahoo, S. (2013). Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes—A case study at JK Paper mill, Rayagada, India. Environmental Monitoring and Assessment,185(5), 4347–4359.

    CAS  Google Scholar 

  • Neamtu, M., Yediler, A., Siminiceanu, I., & Kettrup, A. (2003). Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. Journal of Photochemistry and Photobiology A: Chemistry,161(1), 87–93.

    CAS  Google Scholar 

  • Nemerow, N. L., & Dasgupta, A. (1991). Industrial and hazardous waste treatment. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Neta, P., Madhavan, V., Zemel, H., & Fessenden, R. W. (1977). Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. Journal of the American Chemical Society,99(1), 163–164.

    CAS  Google Scholar 

  • Parthasarathy, S., Gomes, R. L., & Manickam, S. (2016). Process intensification of anaerobically digested palm oil mill effluent (AAD-POME) treatment using combined chitosan coagulation, hydrogen peroxide (H 2 O 2) and Fenton’s oxidation. Clean Technologies and Environmental Policy,18(1), 219–230.

    CAS  Google Scholar 

  • Pathak, M., Devi, A., Bhattacharyya, K., Sarma, H., Subudhi, S., & Lal, B. (2015). Production of a non-cytotoxic bioflocculant by a bacterium utilizing a petroleum hydrocarbon source and its application in heavy metal removal. RSC Advances,5(81), 66037–66046.

    CAS  Google Scholar 

  • Pathak, M., Devi, A., Sarma, H. K., & Lal, B. (2014). Application of bioflocculating property of Pseudomonas aeruginosa strain IASST201 in treatment of oil-field formation water. Journal of Basic Microbiology,54(7), 658–669.

    CAS  Google Scholar 

  • Pathak, M., Sarma, H. K., Bhattacharyya, K. G., Subudhi, S., Bisht, V., Lal, B., et al. (2017). Characterization of a novel polymeric bioflocculant produced from bacterial utilization of n-hexadecane and its application in removal of heavy metals. Frontiers in microbiology,8, 170.

    Google Scholar 

  • Patterson, S., Chanasyk, D., Mapfumo, E., & Naeth, M. (2008). Effects of diluted Kraft pulp mill effluent on hybrid poplar and soil chemical properties. Irrigation Science,26(6), 547.

    Google Scholar 

  • Pearl, I., & Benson, H. (1940). The determination of lignin in sulphide pulping liquor. Paper Trade Journal, 111, 35–36.

    CAS  Google Scholar 

  • Phukan, S., & Bhattacharyya, K. G. (2003). Modification of soil quality near a pulp and paper mill. Water, Air, and Soil Pollution,146(1–4), 319–333.

    CAS  Google Scholar 

  • Pokhrel, D., & Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater—A review. Science of the Total Environment,333(1–3), 37–58.

    CAS  Google Scholar 

  • Raj, A., Kumar, S., Haq, I., & Singh, S. K. (2014). Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecological Engineering,71, 355–362.

    Google Scholar 

  • Renault, F., Sancey, B., Badot, P.-M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes—An eco-friendly approach. European Polymer Journal,45(5), 1337–1348.

    CAS  Google Scholar 

  • Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research,45(15), 4311–4340.

    CAS  Google Scholar 

  • Rodrigues, A. C., Boroski, M., Shimada, N. S., Garcia, J. C., Nozaki, J., & Hioka, N. (2008). Treatment of paper pulp and paper mill wastewater by coagulation–flocculation followed by heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry,194(1), 1–10.

    CAS  Google Scholar 

  • Saikia, M. K., Kalita, S., Sarma, G., & Lohar, P. (2012). Biological tools for computation of physico chemistry of a wetland affected by pulp and paper mill effluents. Journal of Biological and Chemical Research,29(1), 52–66.

    Google Scholar 

  • Sanchez, P. S., Sato, M. I., Paschoal, C. M., Alves, M. N., Furlan, E. V., & Martins, M. T. (1988). Toxicity assessment of industrial effluents from S. Paulo state, Brazil, using short-term microbial assays. Toxicity Assessment,3(1), 55–80.

    CAS  Google Scholar 

  • Saraswathi, R., & Saseetharan, M. (2010). Effects of temperature and pH on floc stability and biodegradation in paper and pulp mill effluent. Journal of Engineering Research and Studies E-ISSN,976, 7916.

    Google Scholar 

  • Scott, J. P., & Ollis, D. F. (1995). Integration of chemical and biological oxidation processes for water treatment: Review and recommendations. Environmental Progress,14(2), 88–103.

    CAS  Google Scholar 

  • Sharma, V., Garg, U. K., & Arora, D. (2014). Impact of pulp and paper mill effluent on physico-chemical properties of soil. Archives of Applied Science Research,6(2), 12–17.

    Google Scholar 

  • Singh, P., & Thakur, I. S. (2006). Colour removal of anaerobically treated pulp and paper mill effluent by microorganisms in two steps bioreactor. Bioresource Technology,97(2), 218–223.

    CAS  Google Scholar 

  • Sponza, D. T. (2003). Application of toxicity tests into discharges of the pulp-paper industry in Turkey. Ecotoxicology and Environmental Safety,54(1), 74–86.

    CAS  Google Scholar 

  • Sun, P., Hui, C., Bai, N., Yang, S., Wan, L., Zhang, Q., et al. (2015). Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal. Scientific Reports,5, 17465.

    CAS  Google Scholar 

  • Tambosi, J. L., Di Domenico, M., Schirmer, W. N., José, H. J., Moreira, R. D. F. (2006). Treatment of paper and pulp wastewater and removal of odorous compounds by a Fenton-like process at the pilot scale. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(8), 1426–1432.

    CAS  Google Scholar 

  • Tang, W. Z. (2016). Physicochemical treatment of hazardous wastes. Boca Raton: CRC Press.

    Google Scholar 

  • Wang, C.-T., Chou, W.-L., Chung, M.-H., & Kuo, Y.-M. (2010). COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination,253(1–3), 129–134.

    CAS  Google Scholar 

  • Xu, M., Wang, Q., & Hao, Y. (2007). Removal of organic carbon from wastepaper pulp effluent by lab-scale solar photo-Fenton process. Journal of hazardous materials, 148(1–2), 103–109.

    CAS  Google Scholar 

  • Yoo, H.-C., Cho, S.-H., & Ko, S.-O. (2001). Modification of coagulation and Fenton oxidation processes for cost-effective leachate treatment. Journal of Environmental Science and Health, Part A,36(1), 39–48.

    CAS  Google Scholar 

  • Zaki, S., Farag, S., Elreesh, G. A., Elkady, M., Nosier, M., & El Abd, D. (2011). Characterization of bioflocculants produced by bacteria isolated from crude petroleum oil. International Journal of Environmental Science and Technology,8(4), 831–840.

    CAS  Google Scholar 

  • Zhang, Q., & Chuang, K. T. (2001). Adsorption of organic pollutants from effluents of a Kraft pulp mill on activated carbon and polymer resin. Advances in Environmental Research,5(3), 251–258.

    CAS  Google Scholar 

  • Zwain, H. M., Hassan, S. R., Zaman, N. Q., Aziz, H. A., & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering,1(1–2), 61–64.

    CAS  Google Scholar 

  • Zweifel, U. L., Norrman, B., & Hagstrom, A. (1993). Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients. Marine Ecology-Progress Series,101, 23.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Science and Technology, Govt. of India and the Director of the Institute of Advanced Study in Science and Technology (IASST), Guwahati for financial support to execute this work. The authors wish to thank the Central Instrumentation Facility of IASST for availing its provisions. Authors also like to express their gratitude towards Microbial Biotechnology Laboratory, Life Sciences Division, IASST, for their tremendous help and support in carrying out in bacterial bioassay test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arundhuti Devi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Pathak, M., Kalita, S. et al. Sequential treatment of paper mill effluent with modified Fenton oxidation and bioflocculation. Environ Dev Sustain 22, 5425–5442 (2020). https://doi.org/10.1007/s10668-019-00431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00431-3

Keywords

Navigation