Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector

Abstract

This manuscript brings out with an enhancement of the freshwater productivity from the active inclined solar panel basin solar still (AISPBSS). The research was conducted on the AISPBSS by the diversified mass flow rate of water (mf). The maximum freshwater yield obtained at mf at 1.8, 3.2 and 4.7 kg/h is 7.5, 6.5 and 5.4 kg, respectively. The daily average thermal and exergy efficiency of the AISPBSS at mf at 1.8, 3.2 and 4.7 kg/h is 43.71, 38.27 and 29.62% and 8.39, 6.94 and 5.08%, respectively. The daily average PV panel power production of 47.71, 49.84 and 53.83 watts, electrical efficiency of 7.2, 7.6 and 8.1%, thermal efficiency of 17.3, 18.3 and 19.7%, exergy efficiency of 18.32, 20.23 and 22.39%, the overall thermal efficiency of 61.39, 57.44 and 51.37% and the overall exergy efficiency of 26.52, 27.14 and 27.40% are obtained from the system under mf at 1.8, 3.2 and 4.7 kg/h, respectively. When mf increases, there are decreases in the AISPBSS distillate yield, thermal, exergy and the overall thermal efficiency and increases in the PV panel power production and electrical, thermal, exergy and the overall exergy efficiency. Further, energy return term and carbon credit attained for the AISPBSS have been calculated. It was found that payback period of 20, 18.7 and 17.5 years and carbon credit earned of 21, 25 and 30 $ are obtained at mf at 1.8, 3.2 and 4.7 kg/h, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi.

  2. 2.

    http://photovoltaic-software.com/.

Abbreviations

CSS:

Conventional solar still

EHTC:

Evaporative heat transfer coefficient

EPBP:

Energy payback period

AISPBSS:

Active inclined solar panel basin solar still

ISS:

Inclined solar still

IWSS:

Inclined wick solar still

PSS:

Pyramid solar still

PV:

Photovoltaic

SSS:

Stepped solar still

VFPR:

Vertical flat-plate reflector

A :

Area (m2)

A :

Area of solar panel (m2)

CO2 :

Carbon dioxide

E :

Energy (kWh)

E in :

Embodied energy (kWh)

E out :

Annual energy output (kWh)

Exinput:

Exergy input of solar still (W/m2)

Exoutput:

Exergy output of solar still (W/m2)

H :

Monthly average irradiation on PV panels

h :

Heat transfer coefficient (W/m2K)

I :

Current (A)

I (t):

Solar intensity (W/m2)

L :

Life of the system (years)

L fg :

Latent heat of vaporization (kJ/kg K)

m ew :

Hourly productivity from solar still (kg/m2 h)

m f :

Mass flow rate (kg/h)

P :

Power production

PR:

Performance ratio, coefficient for losses (range between 0.9 and 0.5, default value = 0.75)

PV:

Photovoltaic

PV/T:

Photovoltaic/thermal

r :

Solar panel efficiency (%)

T :

Temperature (°C)

V :

Voltage (V)

η overall,exe :

Overall exergy effectiveness (%)

η pv :

Solar panel effectiveness (%)

a:

Ambient

d:

Daily

e:

Evaporation

g:

Glass

s:

Sun

w:

Water

References

  1. Abdallah, S., Abu-Khader, M. M., & Badran, O. (2009). Performance evaluation of solar distillation using vacuum tube coupled with photovoltaic system. Applied Solar Energy,45(3), 176–180.

    Google Scholar 

  2. Abdullah, A. S. (2013). Improving the performance of stepped solar still. Desalination,319, 60–65.

    CAS  Google Scholar 

  3. Abujazar, M. S. S., Fatihah, S., Ibrahim, I. A., Kabeel, A. E., & Sharil, S. (2017a). Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model. Journal of Cleaner Production,170, 147–159. https://doi.org/10.1016/j.jclepro.2017.09.092.

    Article  Google Scholar 

  4. Abujazar, M. S. S., Fatihah, S., & Kabeel, A. E. (2017b). Seawater desalination using inclined stepped solar still with copper trays in a wet tropical climate. Desalination,423, 141–148.

    CAS  Google Scholar 

  5. Al-Nimr, M. A. (2015). Modeling of a novel concentrated PV/T distillation system enhanced with a porous evaporator and an internal condenser. Solar Energy,120, 593–602.

    Google Scholar 

  6. Al-Nimr, M. A., & Al-Ammari, W. A. (2016). A novel hybrid PV-distillation system. Solar Energy,135, 874–883.

    Google Scholar 

  7. Al-Nimr, M. D. A., Al-Ammari, W. A., & Alkhalidi, A. (2018). A novel hybrid photovoltaics/thermoelectric cooler distillation system. International Journal of Energy Research.

  8. Al-Nimr, M. A., Kiwan, S. M., & Talafha, S. (2016). Hybrid solar-wind water distillation system. Desalination,395, 33–40.

    CAS  Google Scholar 

  9. Al-Nimr, M. A., & Qananba, K. S. (2018). A solar hybrid system for power generation and water distillation. Solar Energy,171, 92–105.

    Google Scholar 

  10. Aybar, H. Ş., Irani, F., & Arslan, M. (2016). Performance analysis of single and double basin-inclined solar water distillation systems with and without black-fleece wick. Desalination and Water Treatment,57(37), 17167–17181.

    Google Scholar 

  11. Dev, R., & Tiwari, G. N. (2010). Characteristic equation of a hybrid (PV-T) active solar still. Desalination,254, 126–137.

    CAS  Google Scholar 

  12. El-Agouz, S. A. (2014). Experimental investigation of stepped solar still with continuous water circulation. Energy Conversion and Management,86, 186–193.

    Google Scholar 

  13. El-Agouz, S. A., El-Samadony, Y. A. F., & Kabeel, A. E. (2015). Performance evaluation of a continuous flow inclined solar still desalination system. Energy Conversion and Management,101, 606–615.

    Google Scholar 

  14. Eltawil, M. A., Azam, M. M., & Alghannam, A. O. (2018). Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis). Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2018.01.229.

    Article  Google Scholar 

  15. Eltawil, M. A., & Omara, Z. M. (2014). Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination,349, 1–9.

    CAS  Google Scholar 

  16. Fathy, M., Hassan, H., & Ahmed, M. S. (2018). Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance. Solar Energy,163, 54–61.

    Google Scholar 

  17. Gaur, M. K., & Tiwari, G. N. (2010). Optimization of number of collectors for integrated PV/T hybrid active solar still. Applied Energy,87, 1763–1772.

    CAS  Google Scholar 

  18. Hidouria, K., Mishrab, D. R., Benhmidenea, A., & Chouachia, B. (2017). Experimental and theoretical evaluation of a hybrid solar still integrated with an air compressor using ANN. Desalination and Water Treatment,88, 52–59.

    Google Scholar 

  19. Kabeel, A. E., Abdelgaied, M., & Essa, A. (2018). Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials. Journal of Cleaner Production,183, 20–25. https://doi.org/10.1016/j.jclepro.2018.02.144.

    CAS  Article  Google Scholar 

  20. Kabeel, A. E., Hamed, M. H., & Omara, Z. M. (2012a). Augmentation of the basin type solar still using photovoltaic powered turbulence system. Desalination and Water Treatment,48(1–3), 182–190.

    Google Scholar 

  21. Kabeel, A. E., Khalil, A., Omara, Z. M., & Younes, M. M. (2012b). Theoretical and experimental parametric study of modified stepped solar still. Desalination,289, 12–20.

    CAS  Google Scholar 

  22. Kabeel, A. E., Manokar, A. M., Sathyamurthy, R., Winston, D. P., El-Agouz, S. A., & Chamkha, A. J. (2019). A review on different design modifications employed in inclined solar still for enhancing the productivity. Journal of Solar Energy Engineering,141(3), 031007.

    CAS  Google Scholar 

  23. Kabeel, A. E., Teamah, M. A., Abdelgaied, M., & Abdel Aziz, G. B. (2017). Modified pyramid solar still with v-corrugated absorber plate and PCM as a thermal storage medium. Journal of Cleaner Production,161, 881–887. https://doi.org/10.1016/j.jclepro.2017.05.195.

    CAS  Article  Google Scholar 

  24. Kaviti, A. K., Yadav, A., & Shukla, A. (2016). Inclined solar still designs: A review. Renewable and Sustainable Energy Reviews,54, 429–451.

    Google Scholar 

  25. Kumar, S. (2013). Thermal–economic analysis of a hybrid photovoltaic thermal (PVT) active solar distillation system: Role of carbon credit. Urban Climate,5, 112–124.

    Google Scholar 

  26. Kumar, P. N., Manokar, A. M., Madhu, B., Kabeel, A. E., Arunkumar, T., Panchal, H., et al. (2017). Experimental investigation on the effect of water mass in triangular pyramid solar still integrated to inclined solar still. Groundwater for Sustainable Development,5, 229–234. https://doi.org/10.1016/j.gsd.2017.08.003.

    Article  Google Scholar 

  27. Kumar, P. V., Kumar, A., Prakash, O., & Kaviti, A. K. (2015). Solar stills system design: A review. Renewable and Sustainable Energy Reviews,51, 153–181.

    Google Scholar 

  28. Kumar, S., & Tiwari, A. (2010). Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still. Energy Conversion and Management,51, 1219–1229.

    CAS  Google Scholar 

  29. Kumar, S., & Tiwari, G. N. (2009). Estimation of internal heat transfer coefficients of a hybrid (PV/T) active solar still. Solar Energy,83, 1656–1667.

    CAS  Google Scholar 

  30. Malaeb, L., Aboughali, K., & Ayoub, G. M. (2016). Modeling of a modified solar still system with enhanced productivity. Solar Energy,125, 360–372.

    Google Scholar 

  31. Manokar, A. M., Murugavel, K. K., & Esakkimuthu, G. (2014). Different parameters affecting the rate of evaporation and condensation on passive solar still—A review. Renewable and Sustainable Energy Reviews,38, 309–322.

    Google Scholar 

  32. Manokar, A. M., Prince Winston, D., Kabeel, A. E., Sathyamurthy, R., & Arunkumar, T. (2018a). Different parameter and technique affecting the rate of evaporation on active solar still—A review. Heat and Mass Transfer,54, 593–630.

    Google Scholar 

  33. Manokar, A. M., Taamneh, Y., Kabeel, A. E., Sathyamurthy, R., Winston, D. P., & Chamkha, A. J. (2018b). Review of different methods employed in pyramidal solar still desalination to augment the yield of freshwater. Desalination and Water Treatment,136, 20–30.

    CAS  Google Scholar 

  34. Manokar, A. M., Vimala, M., Winston, D. P., Ramesh, R., Sathyamurthy, R., Nagarajan, P. K., et al. (2019). Different parameters affecting the condensation rate on an active solar still—A review. Environmental Progress & Sustainable Energy,38(1), 286–296.

    CAS  Google Scholar 

  35. Manokar, A. M., Winston, D. P., Kabeel, A. E., El-Agouz, S. A., Sathyamurthy, R., Arunkumar, T., et al. (2018c). Integrated PV/T solar still—A mini-review. Desalination,435, 259–267.

    Google Scholar 

  36. Manokar, A. M., Winston, D. P., Kabeel, A. E., & Sathyamurthy, R. (2018d). Sustainable fresh water and power production by integrating PV panel in inclined solar still. Journal of Cleaner Production,172, 2711–2719.

    Google Scholar 

  37. Manokar, A. M., Winston, D. P., Mondol, J. D., Sathyamurthy, R., Kabeel, A. E., & Panchal, H. (2018e). Comparative study of an inclined solar panel basin solar still in passive and active mode. Solar Energy,169, 206–216.

    Google Scholar 

  38. Murugavel, K. K., Anburaj, P., Hanson, R. S., & Elango, T. (2013). Progresses in inclined type solar stills. Renewable and Sustainable Energy Reviews,20, 364–377.

    Google Scholar 

  39. Nagarajan, P. K., El-Agouz, S. A., DG, H. S., Edwin, M., Madhu, B., Sathyamurthy, R., et al. (2017). Analysis of an inclined solar still with baffles for improving the yield of fresh water. Process Safety and Environmental Protection,105, 326–337.

    Google Scholar 

  40. Nayi, K. H., & Modi, K. V. (2018). Pyramid solar still: A comprehensive review. Renewable and Sustainable Energy Reviews,81, 136–148.

    Google Scholar 

  41. Omara, Z. M., Kabeel, A. E., & Younes, M. M. (2013). Enhancing the stepped solar still performance using internal reflectors. Desalination,314, 67–72.

    CAS  Google Scholar 

  42. Omara, Z. M., Kabeel, A. E., & Younes, M. M. (2014). Enhancing the stepped solar still performance using internal and external reflectors. Energy Conversion and Management,78, 876–881.

    Google Scholar 

  43. Panchal, H., Taamneh, Y., Sathyamurthy, R., Kabeel, A. E., El-Agouz, S. A., Kumar, P. N., et al. (2017). Economic and exergy investigation of triangular pyramid solar still integrated to inclined solar still with baffles. International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2017.1422143.

    Article  Google Scholar 

  44. Praveen Kumar, B., Winston, D. P., Pounraj, P., Manokar, A. M., Sathyamurthy, R., & Kabeel, A. E. (2017). Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination. https://doi.org/10.1016/j.desal.2017.11.007.

    Article  Google Scholar 

  45. Riahi, A., Wan Yusof, K., Mahinder Singh, B. S., Isa, M. H., Olisa, E., & Munni Zahari, N. A. (2015). Sustainable potable water production using a solar still with photovoltaic modules-AC heater. Desalination and Water Treatment,57, 14929–14944. https://doi.org/10.1080/19443994.2015.1070285.

    Article  Google Scholar 

  46. Saeedi, F., Sarhaddi, F., & Behzadmehr, A. (2015). Optimization of a PV/T (photovoltaic/thermal) active solar still. Energy,87, 142–152.

    Google Scholar 

  47. Saini, V., Tiwari, S., & Tiwari, G. N. (2017). Environ economic analysis of various types of photovoltaic technologies integrated with greenhouse solar drying system. Journal of Cleaner Production,156, 30–40.

    Google Scholar 

  48. Sathyamurthy, R., Nagarajan, P. K., El-Agouz, S. A., Jaiganesh, V., & Khanna, P. S. (2015). Experimental investigation on a semi-circular trough-absorber solar still with baffles for fresh water production. Energy Conversion and Management,97, 235–242.

    Google Scholar 

  49. Sathyamurthy, R., Samuel, D. H., & Nagarajan, P. K. (2016). Theoretical analysis of inclined solar still with baffle plates for improving the fresh water yield. Process Safety and Environmental Protection,101, 93–107.

    CAS  Google Scholar 

  50. Singh, D. B., & Tiwari, G. N. (2017a). Enhancement in energy metrics of double slope solar still by incorporating N identical PVT collectors. Solar Energy,143, 142–161.

    CAS  Google Scholar 

  51. Singh, D. B., & Tiwari, G. N. (2017b). Performance analysis of basin type solar stills integrated with N identical photovoltaic thermal (PVT) compound parabolic concentrator (CPC) collectors: A comparative study. Solar Energy,142, 144–158.

    Google Scholar 

  52. Singh, D. B., Tiwari, G. N., Al-Helal, I. M., Dwivedi, V. K., & Yadav, J. K. (2016a). Effect of energy matrices on life cycle cost analysis of passive solar stills. Solar Energy,134, 9–22.

    Google Scholar 

  53. Singh, D. B., Yadav, J. K., Dwivedi, V. K., Kumar, S., Tiwari, G. N., & Al-Helal, I. M. (2016b). Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy,130, 207–223.

    Google Scholar 

  54. Singh, D. B., Yadav, J. K., Dwivedi, V. K., Kumar, S., Tiwari, G. N., & Al-Helal, I. M. (2016c). Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy,130, 207–223.

    Google Scholar 

  55. Tanaka, H. (2011). Tilted wick solar still with flat plate bottom reflector. Desalination,273(2), 405–413.

    CAS  Google Scholar 

  56. Tanaka, H. (2013). Optimum inclination of still and bottom reflector for tilted wick solar still with flat plate bottom reflector. Desalination and Water Treatment,51(34–36), 6482–6489.

    Google Scholar 

  57. Tanaka, H., & Nakatake, Y. (2007). Improvement of the tilted wick solar still by using a flat plate reflector. Desalination,216(1–3), 139–146.

    CAS  Google Scholar 

  58. Tiwari, G. N., Yadav, J. K., Singh, D. B., Al-Helal, I. M., & Abdel-Ghany, A. M. (2015). Exergoeconomic and enviroeconomic analyses of partially covered photovoltaic flat plate collector active solar distillation system. Desalination,367, 186–196.

    CAS  Google Scholar 

  59. Velmurugan, V., Kumar, K. N., Haq, T. N., & Srithar, K. (2009). Performance analysis in stepped solar still for effluent desalination. Energy,34(9), 1179–1186.

    CAS  Google Scholar 

  60. Yari, M., Mazareh, A. E., & Mehr, A. S. (2016). A novel cogeneration system for sustainable water and power production by integration of a solar still and PV module. Desalination,398, 1–11.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ravishankar Sathyamurthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

S. no. Instrument Uncertainty (%)
1. TES 1333R solar power meter 2.51
2. AM4836 3 cup anemometer 3.32
3. Thermocouple (RTD (PT100 type)) 1.53
4. Multimeter (voltage) 1.25
5. Multimeter (current) 3.57
6. Measuring jar 3.42

The uncertainty of instruments is calculated based on the internal uncertainty of instrument (U) and average values of experimental results (X). The value of U is mathematically expressed as,

$$U = \frac{{\sqrt {\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} + \sigma_{4}^{2} + \sigma_{5}^{2} + \sigma_{6}^{2} + \cdots + \sigma_{n}^{2} } }}{N}$$

Similarly, the value of σ (standard deviation) is expressed as,

$$\sigma = \frac{{\sqrt {\sum (X - \bar{X})} }}{N}$$

The uncertainty (%) is calculated as,

$${\text{Uncertainty}}\;{\text{percentage}} = \frac{U}{x} \times 100\;(\% )$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manokar, A.M., Vimala, M., Sathyamurthy, R. et al. Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector. Environ Dev Sustain 22, 4145–4167 (2020). https://doi.org/10.1007/s10668-019-00376-7

Download citation

Keywords

  • Photovoltaic panel-integrated solar still
  • Mass flow rates
  • Panel efficiency
  • PV thermal and exergy analysis
  • Energy payback period
  • Carbon credit earned