Long-term trend detection and spatiotemporal analysis of groundwater levels using GIS techniques in Lower Bhavani River basin, Tamil Nadu, India

Abstract

Groundwater resources are used in various parts of the world to meet out drinking water supply, irrigational practices and industrial applications. These valuable resources are naturally replenished by rainfall infiltration. Due to population growth and industrialization, groundwater resources are often overexploited in different parts of the world particularly in the hard rock areas. It leads to rapid declination in the groundwater level. Therefore, groundwater fluctuation with respect to space and time governs attention throughout the world for the purpose of sustainable management of water resources. In the present study, long-term trend detection and spatiotemporal variation of groundwater levels were analyzed using Geographical Information System (GIS) and performing statistical tests for the Lower Bhavani River basin, Tamil Nadu, India. For this purpose, 32 years long-term groundwater-level data (1984–2015) of 57 observation wells spread over the study area were collected from the government departments. Seasonal variation of groundwater levels was plotted spatially for pre-monsoon (March to May), post-monsoon (January and February), southwest (SW) monsoon (June to September) and northeast (NE) monsoon (October to December) seasons using GIS. The trend variation of groundwater levels was predicted by performing statistical tests such as Mann–Kendall test and Sen’s slope estimator. The present study indicates that the average annual groundwater level has lowered beyond 15 m (below ground level) during all the monsoon seasons in the year 2003 and 2004, which highlights less rainfall infiltration and overexploitation of groundwater. This leads the hard rock aquifer into stress. The study also shows that the groundwater fluctuation is very high in the southeastern and northeastern parts of the basin, and it is moderate in the northern and northwestern parts of the basin. However, the fluctuation is comparatively less in the central part of the basin because of replenishment of groundwater by the Bhavani River. The trend analysis highlights that declining water table is mostly found during SW monsoon season (summer season), which is observed more than 50% area of the basin. The places such as Emmampoondi, Kumbapanai, Kandisalai, Alukuli, Perikoduveri, P.Mettupalayam, Pudupalayam, Sathyamangalam, Nallagoundanpudur, Kullampalayam and Baguthampalayam are mostly affected by the declining trend in the groundwater level. Therefore, this study recommends for the implementation of large-scale rainwater harvesting system in the Lower Bhavani River basin to augment groundwater resources.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abdullahi, M. G., Toriman, M. E., Gasim, M. B., & Garba, I. (2015). Trends analysis of groundwater: Using non-parametric methods in Terengganu Malaysia. Journal of Earth Science and Climatic Change,6(1), 1–3. https://doi.org/10.4172/2157-7617.1000251.

    Article  Google Scholar 

  2. Aggarwal, R., Kaushal, M. P., Kaur, S., & Farmaha, B. (2009). Water resource management for sustainable agriculture in Punjab, India. Water Science and Technology,160(11), 2905–2911. https://doi.org/10.2166/wst.2009.348.

    Article  Google Scholar 

  3. Amanpreet, S., Chandrashekhar, S., Jeyaseelan, A. T., & Chowdary, V. M. (2015). Spatio-temporal analysis of groundwater resources in Jalandhar district of Punjab state, India. Sustainable Water Resources Management,1, 293–304. https://doi.org/10.1007/s40899-015-0022-7.

    Article  Google Scholar 

  4. Amrita, Singh, O., & Singh, K. P. (2016). Analysis of groundwater level trends in Kurukshetra District of Haryana: 1990–2013. Environmental Pollution Control Journal, 19(2), 23–31.

  5. Anand, B., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Raneesh, R. Y. (2017). Prioritization of sub-watersheds based on quantitative morphometric analysis in lower Bhavani basin, Tamil Nadu, India using DEM and GIS techniques. Arabian Journal of Geosciences,10, 552. https://doi.org/10.1007/s12517-017-3312-6.

    Article  Google Scholar 

  6. Anandakumar, S., & Subramani, T. (2014). Regional groundwater flow modeling in Lower Bhavani River basin, Tamil Nadu, India. Disaster Advances,7(12), 41–52.

    Google Scholar 

  7. Anandakumar, S., Subramani, T., & Elango, L. (2008). Spatial variation and seasonal behaviour of rainfall pattern in Lower Bhavani River basin, Tamil Nadu, India. The Ecoscan,2(1), 17–24.

    Google Scholar 

  8. Arya, S., & Subramani, T. (2015). Groundwater flow and fluctuation using GIS in a hard rock region, South India. Indian Journal of Geo-Marine Sciences,44(9), 1422–1427.

    Google Scholar 

  9. Arya, S., Vennila, G., & Subramani, T. (2018). Spatial and seasonal variation of groundwater levels in Vattamalaikarai River basin, Tamil Nadu, India—A study using GIS and GPS. Indian Journal of Geo-Marine Sciences,47(9), 1749–1753.

    Google Scholar 

  10. Basavarajappa, H. T., Pushpavathi, K. N., & Manjunatha, M. C. (2015). Climate change and its impact on groundwater table fluctuation in Precambrian rocks of Chamarajanagara district, Karnataka, India using Geomatics technique. International Journal of Geomatics and Geosciences, 5(4), 510–524.

  11. Basistha, A., Arya, D. S., & Goel, N. K. (2009). Analysis of historical changes in precipitation in the Indian Himalayas. International Journal of Climatology,29(4), 555–572. https://doi.org/10.1002/joc.1706.

    Article  Google Scholar 

  12. Bhat, S., Motz, L. H., Pathak, C., & Kuebler, L. (2015). Geostatistics-based groundwater-level monitoring network design and its application to the upper Floridan aquifer, USA. Environmental Monitoring and Assessment,187(4183), 1–15. https://doi.org/10.1007/s10661-014-4183-x.

    CAS  Article  Google Scholar 

  13. Burn, D. H., & Elnur, M. A. H. (2002). Detection of hydrologic trends and variability. Journal of Hydrology,255, 107–122. https://doi.org/10.1016/S0022-1694(01)00514-5.

    Article  Google Scholar 

  14. Burrough, P. A. (1986). Principles of geographical information systems for land resources assessment. New York: Oxford University Press.

    Google Scholar 

  15. Central Ground Water Board (CGWB). (2008). District Groundwater Brochure, Erode district, Tamil Nadu.

  16. Central Ground Water Board (CGWB). (2015). Groundwater level scenario in India. Ministry of Water Resources, Government of India.

  17. Central Ground Water Board (CGWB). (2017). Aquifer mapping report, Bhavani River Basin aquifer system, Tamil Nadu.

  18. Chen, J., Zhang, H., Qian, H., Wu, J., & Zhang, X. (2013). Selecting proper method for groundwater interpolation based on spatial correlation. In 4th international conference on digital manufacturing & automation, 9(13), 1192–1195. https://doi.org/10.1109/icdma.2013.282.

  19. Das, S. (2001). Trend analysis of groundwater fluctuation in a typical groundwater year in weathered and fractured rock aquifers in parts of Andhra Pradesh. Journal of the Geological Society of India, 58, 5–13. http://www.geosocindia.org/index.php/jgsi/article/view/83929.

  20. Duhan, D., & Pandey, A. (2013). Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research,122, 136–149. https://doi.org/10.1016/j.atmosres.2012.10.010.

    Article  Google Scholar 

  21. Gan, T. Y. (1998). Hydro climatic trends and possible climatic warming in the Canadian prairies. Water Resources Research,34(11), 3009–3015. https://doi.org/10.1029/98WR01265.

    Article  Google Scholar 

  22. Gemmer, M., Becker, S., & Jiang, T. (2004). Observed monthly precipitation trends in China 1951–2002. Theoretical and Applied Climatology,77, 39–45. https://doi.org/10.1007/s00704-003-0018-3.

    Article  Google Scholar 

  23. Goyal, S. K., Chaudhary, B. S., Singh, O., Sethi, G. K., & Thakur, P. K. (2010). Variability analysis of groundwater levels—A GIS based case study. Journal of the Indian Society of Remote Sensing,38(2), 355–364. https://doi.org/10.1007/s12524-010-0024-8.

    Article  Google Scholar 

  24. Grzywna, A., Kaminska, A., & Bochniak, A. (2016). Analysis of spatial variability in the depth of water table in grassland areas. Annual Set The Environment Protection, 18, 291–302.

  25. Gunarathana, M. H. J. P., Nirmanee, K. G. S., & Kumari, M. K. N. (2016). Geostatistical analysis of spatial and seasonal variation of groundwater level: A comprehensive study in Malwathu Oya cascade-I, Anuradhapura, Srilanka. International Research Journal of Environment Sciences, 5(8), 29–36.

  26. Heine, G. W. (1986). A controlled study of some two-dimensional interpolation methods. COGS Computer Contributions,3(2), 60–72.

    Google Scholar 

  27. Hirsh, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research,18(1), 107–121. https://doi.org/10.1029/WR018i001p00107.

    Article  Google Scholar 

  28. Hoque, M. A., Hoque, M. M., & Ahmed, K. M. (2007). Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: Causes and quantification. Hydrogeology Journal,15, 1523–1534. https://doi.org/10.1007/s10040-007-0226-5.

    Article  Google Scholar 

  29. Jagus, J. (2006). Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theoretical and Applied Climatology,183, 77–88. https://doi.org/10.1007/s00704-005-0161-0.

    Article  Google Scholar 

  30. Karunanidhi, D., Vennila, G., & Suresh, M. (2012). GIS approach for rainfall fluctuation study in Omalur Taluk, Salem District, Tamil Nadu, India. Pollution Research,31(3), 493–497.

    Google Scholar 

  31. Karunanidhi, D., Vennila, G., Suresh, M., & Karthikeyan, P. (2013). Geoelectrical Schlumberger investigation for characterizing the hydrogeological conditions using GIS in Omalur Taluk, Salem District, Tamil Nadu, India. Arabian Journal of Geosciences,7(5), 1791–1798. https://doi.org/10.1007/s12517-013-0881-x.

    CAS  Article  Google Scholar 

  32. Kendall, M. G. (1975). Rank correlation methods. Griffin, London. http://www.sciencedirect.com/science/refhub/S0895-9811(15)00014-0/sref18.

  33. Khepar, S. D., Sondhi, S. K., Chawla, J. K., & Singh, M. (2000). Impact of soil and water conservation works on groundwater regime in Kandi Area of Punjab. Journal of Soil and Water Conservation,45(1–20), 41–49.

    Google Scholar 

  34. Khepar, S. D., Yadav, A. K., Sondhi, S. K., Siag, M., & Chawla, J. K. (2002). Optimum number of check structures for groundwater recharge through surface drainage using surplus canal water—A case study. I.E (I) Journal – AG,83, 16–19.

    Google Scholar 

  35. Kshetrimayum, K. S., & Bajpai, V. N. (2012). Assessment of groundwater quality for irrigation use and evolution of hydrochemical facies in Markanda river basin, North western India. Journal of the Geological Society of India,79, 189–198. https://doi.org/10.1007/s12594-012-0024-0.

    CAS  Article  Google Scholar 

  36. Kumar, P., Chandniha, S. K., Lohani, A. K., Krishnan, Gopal, & Nema, A. K. (2018). Trend analysis of groundwater level using non-parametric tests in alluvial aquifers of Uttar Pradesh, India. Current World Environment,13(1), 44–54. https://doi.org/10.12944/CWE.13.1.05.

    Article  Google Scholar 

  37. Kumar, V., Jain, S. K., & Singh, Y. (2010). Analysis of long term precipitation trends in India. Hydrological Sciences Journal,55(4), 484–496. https://doi.org/10.1080/02626667.2010.481373.

    Article  Google Scholar 

  38. Kundzewicz, Z. W., & Robson, A. J. (2004). Change detection in hydrological records: A review of the methodology. Hydrological Sciences,49, 7–19. https://doi.org/10.1623/hysj.49.1.7.53993.

    Article  Google Scholar 

  39. Mann, H. B. (1945). Non-parametric tests against trend. Econometrica,13, 245–259. https://doi.org/10.2307/1907187.

    Article  Google Scholar 

  40. Nayak, T. R., Gupta, S. K., & Galkate, R. (2015). GIS based mapping of groundwater fluctuations in Bina Basin. Aquatic Procedia,4, 1469–1476. https://doi.org/10.1016/j.aqpro.2015.02.190.

    Article  Google Scholar 

  41. Nourani, V., & Mousavi, S. (2016). Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. Journal of Hydrology,536, 10–25. https://doi.org/10.1016/j.jhydrol.2016.02.030.

    Article  Google Scholar 

  42. Panda, D. K., Mishra, A., Jena, S. K., James, B. K., & Kumar, A. (2007). The influence of drought and anthropogenic effects on groundwater levels in Orissa, India. Journal of Hydrology,343(3), 140–153. https://doi.org/10.1016/j.jhydrol.2007.06.007.

    Article  Google Scholar 

  43. Patle, G. T., Singh, D. K., Sarangi, A., Rai, Anil, Khanna, Mano, & Sahoo, R. N. (2015). Time series analysis of groundwater levels and projection of future trend. Journal of the Geological Society of India,85(2), 232–242. https://doi.org/10.1007/s12594-015-0209-4.

    Article  Google Scholar 

  44. Rajaveni, S. P., Brindha, K., Rajesh, R., & Elango, L. (2013). Spatial and temporal variation of groundwater level and its relation to drainage and intrusive rocks in a part of Nalgonda District, Andhra Pradesh, India. Journal of the Indian Society of Remote Sensing,42(4), 765–776. https://doi.org/10.1007/s12524-013-0328-6.

    Article  Google Scholar 

  45. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association,63(324), 1379–1389.

    Article  Google Scholar 

  46. Shariati, M. R. (2003). Rice irrigation in Iran. FAO Regional Office for the Near East.

  47. Singh, O., & Amrita, K. (2017). GIS-based spatial and temporal investigation of groundwater level fluctuations under rice–wheat ecosystem over Haryana. Journal of the Geological Society of India,89(5), 554–562. https://doi.org/10.1007/s12594-017-0644-5.

    Article  Google Scholar 

  48. Sivapragasam, C., Kannabiran, K., Karthik, G., & Raja, S. (2015). Assessing suitability of GP modeling for groundwater level. Aquatic Procedia,4, 693–699. https://doi.org/10.1016/j.aqpro.2015.02.089.

    Article  Google Scholar 

  49. Subramani, T., Babu, Savithri, & Elango, L. (2013). Computation of groundwater resources and recharge in Chithar River Basin, South India. Environmental Monitoring and Assessment,185, 983–994. https://doi.org/10.1007/s10661-012-2608-y.

    CAS  Article  Google Scholar 

  50. Subramani, T., Prabaharan, S., & Karunanidhi, D. (2015). Groundwater prospecting in a part of Tamirabarani River basin, South India using Remote Sensing and GIS. Indian Journal of Geo-Marine Sciences,44(9), 1401–1408.

    Google Scholar 

  51. Tabari, H., & Hosseinzadh Talaee, P. (2011). Temporal variability of precipitation over Iran: 1966–2005. Journal of Hydrology,396, 313–320. https://doi.org/10.1016/j.jhydrol.2010.11.034.

    Article  Google Scholar 

  52. Tabari, H., Nikbakht, J., & Some’e, B. S. (2012). Investigation of groundwater level fluctuations in the north of Iran. Environmental Earth Sciences,66, 231–243. https://doi.org/10.1007/s12665-011-1229-z.

    Article  Google Scholar 

  53. Tiwari, A. K., Singh, P. K., Chandra, S., & Ghosh, A. (2015). Assessment of groundwater level fluctuation by using remote sensing and GIS in West Bokaro coal field, Jharkhand, India. Journal of Hydraulic Engineering,22(1), 59–67. https://doi.org/10.1080/09715010.2015.1067575.

    Article  Google Scholar 

  54. Vousoughi, F. D., Dinpashoh, Y., Aalami, M. T., & Jhajharia, D. (2013). Trend analysis of groundwater using non-parametric methods (case study: Ardabil Plain). Stochastic Environmental Research and Risk Assessment,27(2), 547–559. https://doi.org/10.1007/s00477-012-0599-4.

    Article  Google Scholar 

  55. Xiao, Y., Gu, X., Yin, S., Shao, J., Cui, Y., Zhang, Q., et al. (2016). Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. SpringerPlus,5(425), 1–15. https://doi.org/10.1186/s40064-016-2073-0.

    CAS  Article  Google Scholar 

  56. Xu, Z. X., Takeuchi, K., & Ishidaira, H. (2003). Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology,279, 144–150. https://doi.org/10.1016/S0022-1694(03)00178-1.

    Article  Google Scholar 

  57. Yand, D., Li, C., Hu, H., Lei, Z., Yang, S., Kusuda, T., et al. (2004). Analysis of water resources variability in the Yellow river of China during the last half century using the historical data. Water Resources Research,40(6), 1–12. https://doi.org/10.1029/2003WR002763.

    Article  Google Scholar 

  58. Zafor, M. A., Alam, M. J. B., Rahman, M. A., & Amin, M. N. (2017). The analysis of groundwater table variations in Sylhet region, Bangladesh. Environmental Engineering Research,152, 1–29. https://doi.org/10.4491/eer.2016.152.

    Article  Google Scholar 

  59. Zhang, X., Hervey, K. D., Hogg, W. D., & Yuzyk, T. R. (2001). Trends in Canadian stream flow. Water Resources Research,34(4), 987–998. https://doi.org/10.1029/2000WR900357.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to the Natural Resources Data Management System [NRDMS] Department of Science and Technology (Government of India), Ref. No: NRDMS/01/09/014 dated 31.12.2015, for providing the grants and support to carry out this work effectively. The authors would like to thank Sri Shakthi Institute of Engineering and Technology, Coimbatore-641062, India, for providing all facilities and the wonderful platform for research. Further, authors would like to thank anonymous reviewers for their valuable comments and suggestions which were useful to improve the quality of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Karunanidhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anand, B., Karunanidhi, D., Subramani, T. et al. Long-term trend detection and spatiotemporal analysis of groundwater levels using GIS techniques in Lower Bhavani River basin, Tamil Nadu, India. Environ Dev Sustain 22, 2779–2800 (2020). https://doi.org/10.1007/s10668-019-00318-3

Download citation

Keywords

  • Groundwater level
  • Spatiotemporal variation
  • Mann–Kendall test
  • GIS
  • Lower Bhavani River basin