Discriminating groundwater salinization processes in coastal aquifers of southeastern India: geophysical, hydrogeochemical and numerical modeling approach

  • S. Gopinath
  • K. Srinivasamoorthy
  • K. Saravanan
  • R. Prakash


Groundwater salinization in coastal aquifers is mainly due to severe groundwater extraction, global sea level rise, usage of agricultural fertilizers and pesticides, waste disposal and influences of industrial and domestic effluents. The study area is the Nagapattinam and Karaikal coastal aquifers, noticeable with quick growth in population, severe industrial and urban activities resulting in groundwater abstraction ensuing deeper water level and salinization. Attempt has been made to discriminate sources of groundwater salinization using geophysical, hydrochemical and modeling techniques. The electrical resistivity survey isolated resistivity ranges between 0.5 and 1.5 Ω m as seawater intruded. Groundwater samples were collected for two different seasons and analyzed for major, minor and rare earth elements. The results signify higher conductivity (12,430.0 μS/cm), chloride (5060.0 mg/L) and sodium (1330.0 mg/L), indicating the saline nature of groundwater. The normalized REE patterns in groundwater exhibit enrichment of HREEs than LREEs due to higher mobility. The SEAWAT code predicted seawater intrusion along the eastern portion of the study area.


Coastal aquifers Hydrochemistry Resistivity REE Saline intrusion SEAWAT 



First author thanks to funding agency University Grants Commission (F.No.41-1036/2012 (SR); Date: 23.07.2012) through major research project. The authors also extend sincere thanks to Prof. S. Balakrishnan Department of Earth Sciences, for his valuable guidance and suggestions during REEs interpretation.


  1. Acworth, R. I., & Dasey, G. R. (2003). Mapping of the hyporheic zone around a tidal creek using a combination of borehole logging, borehole electrical tomography and cross-creek electrical imaging, New South Wales, Australia. Journal of Hydrogeology, 11, 359–372. Scholar
  2. APHA. (1992). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: APHA.Google Scholar
  3. Bayne, C. K., Franks, P. C., & Ives, W. J. R. (1971). Geology and groundwater resources of EIisworth County, Central Kansas. Kansas State Geol. Sure. Ball., 201, 84p.Google Scholar
  4. Bear, J. (1979). Hydraulics of groundwater. New York: McGraw-Hill.Google Scholar
  5. Bertram, C. J., & Elderfield, H. (1993). The geochemical balance of the rare earth elements an neodymium isotopes in the oceans. Geochimica et Cosmochimica Acta, 57, 1957–1986.CrossRefGoogle Scholar
  6. Biddau, R., Cidu, R., & Frau, F. (2002). Rare earth elements in waters from albite-bearing granodiorites of central Sardinia, Italy. Chemical Geology, 182, 1–14.CrossRefGoogle Scholar
  7. Bobachev, A., Modin, I., Shevnin, V. (2003). IPI2WIN, user’s manual, programs set for 1-D VES data interpretation. Department of Geophysics, Geological Faculty, Moscow University, Russia.Google Scholar
  8. Byrne, R. H., & Kim, K. H. (1990). Rare earth element scavenging in seawater. Geochimica et Cosmochimica Acta, 54, 2645–2656.CrossRefGoogle Scholar
  9. Byrne, R. H., & Sholkovitz, E. R. (1996). Marine chemistry and geochemistry of the lanthanides. In K. A. Gschneider Jr. & L. Eyring (Eds.), Handbook on the physics and chemistry of rare earths (Vol. 23, pp. 497–592). Elsevier. Google Scholar
  10. Capaccioni, B., Didero, M., Paletta, C., & Didero, L. (2005). Saline intrusion and refreshening in a multilayer coastal aquifer in the Catania Plain (Sicily, Southern Italy): Dynamics of degradation processes according to the hydrochemical characteristics of groundwaters. Journal of Hydrology, 307(2005), 1–16.CrossRefGoogle Scholar
  11. CGWB. (2008). Central Ground Water Board-India District groundwater brochure Nagapattinam district, Tamil Nadu. Technical report 1-22.Google Scholar
  12. Chetelat, B., & Gaillardet, J. (2005). Boron isotopes in the Seine River, France: A probe of anthropogenic contamination. Environmental Science and Technology, 39(8), 2486–2493.CrossRefGoogle Scholar
  13. Davis, S. N., & De Wiest, (1996). Hydrogeol. New York: Wiley.Google Scholar
  14. Fisher, R. S., & Mullican, F. W. (1997). Hydrochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Transpecos, Texas, U.S.A. Journal of Hydrogeology, 5, 14–16.CrossRefGoogle Scholar
  15. Gopinath, S., Srinivasamoorthy, K., Saravanan, K., Suma, C. S., Prakash, R., Senthilnathan, D., et al. (2016). Modeling saline water intrusion in Nagapattinam coastal aquifers, Tamilnadu, India. Modeling Earth Systems and Environment, 2, 2. Scholar
  16. Howard, K. W. F., & Beck, P. J. (1993). Hydrochemical implications of groundwater contamination by road de-icing chemicals. Journal of Contaminant Hydrology, 12, 245–268.CrossRefGoogle Scholar
  17. Jones, B. F., Vengosh, A., Rosenthal, E., & Yechiele, Y. (1999). Geochemical investigation. In J. Bear, A. H. Cheng, S. Sorek, D. Ouazar, & I. Herrers (Eds.), Seawater intrusion in coastal aquifer concepts, methods, and practices. London: Kluwer Academic Publishers.Google Scholar
  18. Karanth, K. R. (1987). Ground water assessment, development and management (p. 720). New Delhi: Tata Mc Graw Hill.Google Scholar
  19. Kraemer, S. M., Xu, J., Raymond, K. N., & Sposito, G. (2002). Adsorption of Pb(II) and Eu(III) by oxide minerals in the presence of natural and synthetic hydroxamate siderophores. Environmental Science and Technology, 36, 1287–1291.CrossRefGoogle Scholar
  20. Kumar, M., Ramanathan, A. L., & Rao Bhishm Kumar, M. S. (2007). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039. Scholar
  21. Martos, F. S., Bosch, A. P., & Calaforra, J. M. (1999). Hydrogeochemical processes in an arid region of Europe (Almeria, SE Spain). Applied Geochemistry, 14(6), 735–745.CrossRefGoogle Scholar
  22. Naidu, L. S., Rao, V. V. S. G., Rao, G. T., Mahesh, J., Padalu, G., Sarma, V. S., et al. (2012). An integrated approach to investigate saline water intrusion and to identify the salinity sources in the Central Godavari delta, Andhra Pradesh, India. Arabian Journal of Geosciences. Scholar
  23. Nofal, M. A., Amer, S. M., El-Didy, A. M., & Fekry, E. R. (2015). Delineation and modeling of seawater intrusion into the Nile Delta Aquifer: A new perspective. Water Science, 29, 156–166.CrossRefGoogle Scholar
  24. Nowroozi, A. A., Horrocks, S. B., & Henderson, P. (1999). Saltwater intrusion into the freshwater aquifer in the eastern shore of Virginia: A reconnaissance electrical resistivity survey. Journal of Applied Geophysics, 42, 1–22.CrossRefGoogle Scholar
  25. Piper, D. Z., & Bau, M. (2013). Normalized Rare Earth Elements in Water, Sediments, and Wine: Identifying Sources and Environmental Redox Conditions. American Journal of Analytical Chemistry, 4, 69–83.CrossRefGoogle Scholar
  26. Rajmohan, N., & Elango, L. (2004). Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology, 46, 47–61.Google Scholar
  27. Reilly, T. E., & Harbaugh, A. W. (2004). Guidelines for evaluating ground-water flow models: U.S. Geological Survey Scientific Investigations Report 2004-5038, p. 30.Google Scholar
  28. Revelle, R. (1941). Criteria for recognition of sea water in ground waters. Eos, Transactions American Geophysical Union, 22, 593–597.CrossRefGoogle Scholar
  29. Schmidt, R. A., Smith, R. H., Lasch, J. E., Mosen, A. W., Olehy, D. A., & Vasilevshis, J. (1963). Abundances of fourteen rare-earth elements, scandium, and yttrium in meteoritic and terrigenous matter. Geochimica et Cosmochi-Mica Acta, 27, 577–622.CrossRefGoogle Scholar
  30. Senthilkumar, M., & Elango, L. (2004). Three-dimensional mathematical model to simulate groundwater flow in the lower Palar River basin, Southern India. Hydrogeology Journal, 12, 197–208.CrossRefGoogle Scholar
  31. Srinivasamoorthy, K., Vasanthavigar, M., Vijayaraghavan, K., Sarathidasan, R., & Gopinath, S. (2011). Hydrochemistry of groundwater in a coastal region of Cuddalore district, Tamilnadu, India: Implication for quality assessment. Arabian Journal of Geoscience. Scholar
  32. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Geoscience Texts, Blackwell.Google Scholar
  33. U.S. Army Corps of Engineers. (2011). Final groundwater model calibration report aquifer storage and recovery regional modeling study.Google Scholar
  34. Vengosh, A., Spivack, A. J., Artzi, Y., & Ayalon, A. (1999). Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resources Research, 35(6), 1877–1894.CrossRefGoogle Scholar
  35. WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva: World Health Organization.Google Scholar
  36. Williams, A. T., & Tudor, D. T. (2001). Temporal trends in litter dynamics at a pebble pocket beach. Journal of Costal Research, 17, 137–145.Google Scholar
  37. Yuan, J., Mao, X., Wang, Y., Deng, Z., & Huang, L. (2014). Geochemistry of rare-earth elements in shallow groundwater, northeastern Guangdong Province, China. Chinese Journal of Geochemistry, 33, 053–064. Scholar
  38. Zohdy, A. A. R., Eaton, G. P., & Mabey, D. R. (1974). Applications of surface geophysics to groundwater investigations. Techniques of Water Resource Investigation of the US Geological Survey, 2, 116.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • S. Gopinath
    • 1
  • K. Srinivasamoorthy
    • 1
  • K. Saravanan
    • 1
  • R. Prakash
    • 1
  1. 1.Department of Earth Sciences, School of Physical, Chemical and Applied SciencesPondicherry UniversityPuducherryIndia

Personalised recommendations