Skip to main content
Log in

Effects of litter quality on macroaggregates reformation and soil stability in different soil horizons

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The resilience of soils under varying litter quality is unclear. Therefore, this study investigated the effects of different litter sources on soils with low (< 2%) initial organic carbon content on soil reaggregation and stability. Seven soils were incubated for 30 weeks at 25 °C after adding high-quality Vachellia karroo leaf litter (C/N = 23.8) and low-quality Zea mays stover (C/N = 37.4). Soil aggregation (SA) and stability were evaluated by measuring mean weight diameter (MWD), whole soil stability index (WSSI), percentage water-stable aggregates (% WSA) and distribution fractions of dry-sieved soil aggregates size (Pai). Cumulative macroaggregates yields, MWD, % WSA and WSSI in litter-amended soils increased up to week 8 during incubation and thereafter declined gradually in all soils. Litter quality significantly (P < 0.05) enhanced macroaggregation and soil stability across soils but had insignificant (P > 0.05) effects within a soil type. An increase in macroaggregation increased MWD, WSSI values and large and small aggregates distribution. Aggregation was significantly higher in soils with higher clay content than sand content, suggesting that soil texture was highly influential to the litter effects on SA. We concluded that the rate of soil aggregate reformation was influenced by soil type × time interactions which determined the extent and dynamics of macroaggregation during the 30 weeks of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abiven, S., Menasseri, S., Angers, D. A., & Leterme, P. (2007). Dynamics of aggregates stability and biological binding agents during the decomposition of organic material. European Journal of Soil Science, 58, 239–247.

    Article  CAS  Google Scholar 

  • Abiven, S., Menasseri, S., & Chenu, C. (2009). The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biology & Biochemistry, 41, 1–12.

    Article  CAS  Google Scholar 

  • Alagoz, Z., & Yilmaz, E. (2009). Effects of different sources of organic matter on soil aggregate formation and stability: A laboratory study on a Lithic Rhodoxeralf from Turkey. Soil and Tillage Research, 103, 419–424.

    Article  Google Scholar 

  • Angers, D. A., Bullock, M. S., & Mehuys, G. R. (2008). Aggregate stability to water. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 811–819). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Balesdent, J., Chenu, C., & Balabane, M. (2000). Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage Research, 53, 215–230.

    Article  Google Scholar 

  • Bardgett, R. D., & Shine, A. (1999). Linkanges between litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 31, 317–321.

    Article  CAS  Google Scholar 

  • Blagodatskaya, E., & Kuzyakov, Y. (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biology and Fertility of Soils, 45, 115–131.

    Article  Google Scholar 

  • Blanco-Canqui, H., & Lal, R. (2010). Soil resilience and conservation. In Principles of soil conservation and management. Springer, Dordrecht.

  • Calero, N., Barron, V., & Torrent, J. (2008). Water dispersible clay in calcareous soils of southwestern Spain. CATENA, 74, 22–30.

    Article  Google Scholar 

  • Cambardella, C. A. (2006). Aggregation and organic matter. In R. Lal (Ed.), Encyclopedia of soil science (pp. 52–55). Boca Raton, FL: Tylor and Francis.

    Google Scholar 

  • Cambardella, C. A., & Elliott, E. T. (1992). Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56, 777–782.

    Article  Google Scholar 

  • Canasveras, J. C., Barron, V., Del Campillo, M. C., Torrent, J., & Gomez, J. A. (2010). Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158, 78–84.

    Article  CAS  Google Scholar 

  • Caron, J., Kay, B. D., & Stone, J. A. (1992). Improvement of structural stability of a clay loam with drying. Soil Science Society of America Journal, 56, 1583–1590.

    Article  Google Scholar 

  • Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., & Six, J. (2015). Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 21, 3200–3209.

    Article  Google Scholar 

  • Conde, E., Cardenas, M., Ponce-Mendoza, A., Luna-Guido, M. L., Cruz-Mondragon, C., & Dendooven, L. (2005). The impacts of in-organic nitrogen application on mineralization of C-14-labelled maize and glucose, and on priming effect in saline alkaline soil. Soil Biology and Biochemistry, 37, 681–691.

    Article  CAS  Google Scholar 

  • Coppens, F., Merckx, R., & Recous, S. (2006). Impact of crop residue location on carbon and nitrogen distribution in soil and in water-stable aggregates. European Journal of Soil Science, 57, 570–582.

    Article  Google Scholar 

  • De Gryze, S., Six, J., Brits, C., & Merckx, P. (2005). A quantification of short-term macroaggregates dynamics: Influences of wheat residue input and texture. Soil Biology and Biochemistry, 37, 55–66.

    Article  CAS  Google Scholar 

  • De Gryze, S., Six, J., & Merckx, R. (2006). Quantifying water-stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study. European Journal of Soil Science, 57, 693–707.

    Article  CAS  Google Scholar 

  • Denef, K., Six, J., Bossuyt, H., Frey, S. D., Elliott, E. T., Merckx, R., et al. (2001). Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biology and Biochemistry, 33, 1599–1611.

    Article  CAS  Google Scholar 

  • Denef, K., Six, J., Merckx, R., & Paustian, K. (2002). Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant and Soil, 2, 185–200.

    Article  Google Scholar 

  • Diaz-Zorita, M., Perfect, E., & Grove, J. H. (2002). Disruptive methods for assessing soil structure. Soil and Tillage Research, 64, 3–22.

    Article  Google Scholar 

  • Dinel, H., Mehuys, G. R., & Levesque, M. (1991). Influence of humic acid and fibric materials on the aggregation and aggregate stability of a lacustrine silty clay. Soil Science, 2, 146–157.

    Article  Google Scholar 

  • Dutarte, P., Bartoli, F., Andreux, F., Portal, J. M., & Ange, A. (1993). Influence of content and nature of organic matter on the structure of some sandy soils from West Africa. Geoderma, 56, 459–478.

    Article  Google Scholar 

  • DWA (Department of Water Affairs). (2013). Feasibility study: Mzimvubu Water Project. Newsletter 1, August.

  • Elliot, E. T. (1986). Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 50, 627–633.

    Article  Google Scholar 

  • Fissore, C., Jurgensen, M. F., Pickens, J., Miller, C., Page-Dumroese, D., & Giardina, C. P. (2016). Role of soil texture, clay mineralogy, location, and temperature in coarse wood decomposition-a mesocosm experiment. Ecosphere. https://doi.org/10.1002/ecs2.1605.

    Article  Google Scholar 

  • Gale, W. J., Cambardella, C. A., & Bailey, T. B. (2000). Surface residue- and root-derived carbon in stable and aggregates. Soil Science Society of America Journal, 64, 196–201.

    Article  CAS  Google Scholar 

  • Gentile, R., Vanlauwe, B., & Six, J. (2011). Litter quality impacts short-but not long-term soil carbon dynamics in soil aggregate fractions. Ecological Applications, 21, 695–703.

    Article  Google Scholar 

  • Fey. M. & Gilkes, R. (2010). A short guide to the soils of South Africa, their distribution and correlation with World Reference Base soil groups. Proceedings, pp 32–35. http://www.ldd.go.th/swcst/Report/soil/symposium/pdf/2503.pdf. Accessed 12 November 2014.

  • Grandy, A. S., Porter, G. A., & Erich, M. S. (2002). Organic amendment and rotation crop effects on the recovery of soil organic matter and aggregation in potato cropping systems. Soil Science Society of America Journal, 66, 1311–1319.

    Article  CAS  Google Scholar 

  • Guenet, B., Danger, M., Abbadie, L., & Lacroix, G. (2010). Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology, 91, 2850–2861.

    Article  Google Scholar 

  • Hati, K. M., Swarup, A., Mishra, B., Manna, M. C., Wanjari, R. H., Mandal, K. G., et al. (2008). Impacts of long-term application of fertilizer, manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol. Geoderma, 148, 173–179.

    Article  CAS  Google Scholar 

  • Heal, O. W., Anderson, J. M., & Swift, M. J. (1997). Plant litter quality and decomposition: An historical overview. In G. Cadisch & K. E. Giller (Eds.), Driven by nature: Plant litter quality and decomposition (pp. 3–30). Walliford: CAB International.

    Google Scholar 

  • Helfrich, M., Ludwig, B., Potthoff, M., & Flessa, H. (2008). Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitioning of litter carbon and nitrogen. Soil Biology and Biochemistry, 40, 1823–1835.

    Article  CAS  Google Scholar 

  • Ingram, J. S. I., & Fernandes, E. C. M. (2001). Managing carbon sequestration in soils. Concept and terminology. Agriculture, Ecosystems & Environment, 87, 111–117.

    Article  Google Scholar 

  • Jastrow, J. D. (1996). Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 28, 656–676.

    Article  Google Scholar 

  • Jones, H. L., & Worrall, J. J. (1995). Fungal biomass in decayed wood. Mycologia, 87, 459–466.

    Article  Google Scholar 

  • Kay, B. D., & Angers, D. A. (2000). Soil structure. In M. E. Sumner (Ed.), Handbook of soil science (pp. 229–276). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kemper, W. D., & Rosenau, R. C. (1986). Size distribution of aggregates. In A. Klute (Ed.), Methods of soil analysis. Part 1. Agron. Monogr. 9 (2nd ed., pp. 635–662). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Kimetu, J. M., & Lehmann, J. (2010). Stability and stabilization of biochar and green manure with different organic carbon contents. Australian Journal of Soil Research, 48, 577–585.

    Article  CAS  Google Scholar 

  • Le Bissonnais, Y. (1996). Aggregate stability and assessment of soil crustability and erodibility. I. Theory and methodology. European Journal of Soil Science, 47, 425–437.

    Article  Google Scholar 

  • Marquez, C. O., Garcia, V. J., Cambardella, C., Schultz, R. C., & Isenhart, T. M. (2004). Aggregate-size stability distribution and soil stability. Soil Science Society of America Journal, 68, 725–735.

    Article  CAS  Google Scholar 

  • Milne, R. M., & Haynes, R. J. (2004). Soil organic matter, microbial properties and aggregate stability under annual and perennial pastures. Biology and Fertility of Soils, 39, 172. https://doi.org/10.1007/s00374-003-0698-y.

    Article  Google Scholar 

  • Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, Pretoria South Africa.

  • Nelson, D. W., Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In A. L. Page et al (Ed.), Methods of soil analysis, Part 2, Agronomy (2nd Ed., Vol. 9, pp. 961–1010). Madison, WI: Am. Soc. Of Agron. Inc.

  • Nichols, K. A., & Toro, M. (2011). A whole soil stability index (WSSI) for evaluating soil aggregation. Soil and Tillage Research, 111, 99–104.

    Article  Google Scholar 

  • Niewczas, J., & Witkowska-Wakzak, B. (2003). Index of soil aggregate stability as linear function value of transition matrix elements. Soil and Tillage Research, 70(2), 121–130.

    Article  Google Scholar 

  • Nimmo, J. R., & Perkins, K. S. (2002). Aggregate stability and size distribution. Soil Science Society of America Journal, 5, 317–328.

    Google Scholar 

  • Oades, J. M., & Waters, A. G. (1991). Aggregate hierarchy in soils. Australian Journal of Soil Research, 29, 815–828.

    Article  Google Scholar 

  • Okalebo, J. B., Gathua, K. W., & Woomer, P. L. (2000). Laboratory methods of soil and plant analysis: A working manual. Nairobi: TSBF-KARI-UNESCO.

    Google Scholar 

  • Parwada, C., & Van Tol, J. (2016). Soil properties influencing erodibility of soils in the Ntabelanga area, Eastern Cape Province, South Africa. Acta Agriculturae Scandinavica, Section B Soil and Plant Science. https://doi.org/10.1080/09064710.2016.1220614.

    Article  Google Scholar 

  • Piccolo, A. (1996). Humus and soil conservation. In A. Piccolo (Ed.), Humic substances in terrestrial ecosystems (pp. 225–264). Amsterdam: Elsevier Science B.V.

    Chapter  Google Scholar 

  • Podrazsky, V., Holubik, O., Vopravil, J., Khel, T., Moser, W. K., & Prknova, H. (2015). Effects of afforestation on soil structure formation in two climatic regions of the Czech Republic. Journal of Forest Science, 61, 225–234.

    Article  CAS  Google Scholar 

  • Poirier, N., Sohi, S. P., Gaunt, J. L., Mahieu, N., Randall, E. W., Powlson, D. S., et al. (2005). The chemical composition of measurable SOM pools. Organic Geochemistry, 36, 1174–1189.

    Article  CAS  Google Scholar 

  • Potthast, K., Hamer, U., & Makeschin, F. (2010). Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador. Soil Biology and Biochemistry, 42, 56–64.

    Article  CAS  Google Scholar 

  • Puget, P., Chenu, C., & Balesdent, J. (2000). Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. European Journal of Soil Science, 51, 595–605.

    Article  Google Scholar 

  • Reynolds, W. D., Drury, C. F., Tan, C. S., Fox, C. A., & Yang, X. M. (2009). Use of indicators and pore volume function characteristics to quantify soil physical quality. Geoderma, 152, 252–263.

    Article  Google Scholar 

  • Reynolds, W. D., Drury, C. F., Yang, X. M., Fox, C. A., Tan, C. S., & Zhang, T. Q. (2007). Land management effects on the near-surface physical quality of clay loam soils. Soil and Tillage Research, 96, 316–330.

    Article  Google Scholar 

  • SAS Institute Inc. (2010). SAS campus drive, Cary, North Carolina, United States.

  • Seybold, C. A., & Herrick, J. E. (2001). Aggregate stability kit for soil quality assessments. CATENA, 44, 37–45.

    Article  Google Scholar 

  • Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7–31.

    Article  Google Scholar 

  • Six, J., Elliot, E. T., & Paustian, K. (1999). Aggregate dynamics under convectional and non-tillage system. Soil Science Society of America Journal, 63, 1350–1358.

    Article  CAS  Google Scholar 

  • Six, J., Elliot, E. T., & Paustian, K. (2000). Soil Structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64, 1042–1049.

    Article  CAS  Google Scholar 

  • Six, J., Elliott, E. T., Paustian, K., & Doran, J. W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62, 1367–1377.

    Article  CAS  Google Scholar 

  • Soil Classification Working Group. (1991). Soil classification a taxonomic system for South Africa. Memoirs on the Agricultural Natural Resources of South Africa No. 15. Department of Agricultural Development, Pretoria.

  • Sonneveld, M. P. W., Everson, T. M., & Veldkamp, A. (2005). Multi-scale analysis of soil erosion dynamics in KwaZulu-Natal, South Africa. Land Degradation & Development, 16, 287–301.

    Article  Google Scholar 

  • Tang, K. L. (2004). Soil and water conservation in China. Beijing: Science Press. (in Chinese).

    Google Scholar 

  • Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141–163.

    Article  CAS  Google Scholar 

  • Unger, P. W. (1997). Aggregate and organic carbon concentration interrelationships of a Torrertic Paleustoll. Soil and Tillage Research, 42, 95–113.

    Article  Google Scholar 

  • Van Tol, J. J., Akpan, W., Kanuka, G., Ngesi, S., & Lange, D. (2014). Soil erosion and dam dividends: Science facts and rural ‘fiction’ around the Ntabelanga dam, Eastern Cape, South Africa. South African Geographical Journal. https://doi.org/10.1080/03736245.2014.977814.

    Article  Google Scholar 

  • Wagner, S., Cattle, S. R., & Scholten, T. (2007). Soil-aggregate formation as influenced by clay content and organic-matter amendment. Journal of Plant Nutrition and Soil Science, 170, 173–180.

    Article  CAS  Google Scholar 

  • Wang, B., Zheng, F., Romkens, M. J. M., & Darboux, F. (2013). Soil erodibility for water erosion. A perspective and Chinese experiences. Geomorphology, 187, 1–10.

    Article  Google Scholar 

  • Whitbread, A., Blair, G., Konboon, Y., Lefroy, R., & Naklang, K. (2003). Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agriculture, Ecosystems & Environment, 100, 251–263.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Agricultural Research Council for funding the study as well as the Water Research Commission for financial support to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosmas Parwada.

Ethics declarations

Conflict of interest

There are no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parwada, C., Van Tol, J. Effects of litter quality on macroaggregates reformation and soil stability in different soil horizons. Environ Dev Sustain 21, 1321–1339 (2019). https://doi.org/10.1007/s10668-018-0089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0089-z

Keywords

Navigation