Skip to main content
Log in

Effects of meteorology on ground-level ozone (GLO) concentrations and identifying the hot spots having significantly higher GLO concentration in a semi-urban area

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The present study aims to analyse the influences of five meteorological parameters (temperature, wind speed, barometric pressure, rainfall, and solar radiations) on ground-level ozone (GLO) concentrations over the region of Ranchi Municipal Corporation (Jharkhand, India). The diurnal variation of GLO concentration and the meteorological parameters were analysed in each month to understand the associations. The results indicated that the correlation coefficients of GLO concentration with SR, AT, and DPT are found to be positive in each month and also statistically significant. But, the association between WS and GLO concentration was not uniform between the study days. Furthermore, the study also demonstrates an approach for identifying the hot spots that are having the higher level of GLO concentration. The hot spot maps were produced for each month to understand the shifting of the locations of hot spot locations. The results reveal that the hot spot locations are changes frequently in each case. Since the hot spot analysis was conducted with limited data, the presented hot spots are indicative and dependent on the meteorological conditions of the specific period and cannot be considered as a robust epidemiological study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Harbi, M. (2014). Assessment of air quality in two different urban localities. International Journal of Environmental Research, 8(1), 15–26.

    CAS  Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association. Geographical Analysis, 27(2), 93–115.

    Article  Google Scholar 

  • Beaver, S., & Palazoglu, A. (2009). Influence of synoptic and mesoscale meteorology on ozone pollution potential for San Joaquin Valley of California. Atmospheric Environment, 43(10), 1779–1788.

    Article  CAS  Google Scholar 

  • Camalier, L., Cox, W., & Dolwick, P. (2007). The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmospheric Environment, 41, 7127–7137.

    Article  CAS  Google Scholar 

  • Chang, Y. H., Scrimshaw, M. D., Emmerson, R. H. C., & Lester, J. N. (1998). Geostatistical analysis of sampling uncertainty at the Tollesbury managed retreat site in Blackwater Estuary, Essex, UK: Kriging and cokriging approach to minimise sampling density. Science of the Total Environment, 221(1), 43–57.

    Article  CAS  Google Scholar 

  • Cheng, C. S., Campbell, M., Li, Q., Li, G., Auld, H., Day, N., et al. (2007). ‘A synoptic climatological approach to assess climatic impact on air quality in south-central Canada’. Part II: Future estimates. Water, Air, and Soil pollution, 182(1), 117–130.

    Article  CAS  Google Scholar 

  • Chien, Y. L., Lee, D. Y., Guo, H. Y., & Houng, K. H. (1997). Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Science, 162(4), 291–298.

    Article  CAS  Google Scholar 

  • Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of ozone to summertime climate in the Eastern USA: A modeling case study. Atmospheric Environment, 41, 1494–1511.

    Article  CAS  Google Scholar 

  • Domínguez-López, D., Adame, J. A., Hernández-Ceballos, M. A., Vaca, F., De la Morena, B. A., & Bolívar, J. P. (2014). Spatial and temporal variation of surface ozone, NO and NO2 at urban, suburban, rural and industrial sites in the southwest of the Iberian Peninsula. Environmental Monitoring and Assessment, 186(9), 5337–5351.

    Article  CAS  Google Scholar 

  • Elampari, K., & Chithambarathanu, T. (2011). Diurnal and seasonal variations in surface ozone levels at tropical semi- urban site, Nagercoil, India, and relationships with meteorological conditions. International Journal of Science and Technology., 1(2), 80–88.

    Google Scholar 

  • Getis, A., & Ord, J. K. (1996). Local Spatial Statistics: An Overview. In P. Longley & M. Batty (Eds.), Spatial analysis: Modelling in a GIS environment (pp. 261–277). Cambridge: Geo Information International.

    Google Scholar 

  • Gorai, A. K., Tuluri, F., & Tchounwou, P. B. (2014). A GIS based approach for assessing the association between air pollution and asthma in New York State, USA. International Journal of Environmental Research and Public Health, 11(5), 4845–4869.

    Article  CAS  Google Scholar 

  • GVAQI (1997) Greater Vancouver Regional District Air Quality and Source Control Department, Burnaby, BC.

  • Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., et al. (2011). Analysis of the relationship between O3, NO, and NO2 in Tianjin, China. Aerosol and Air Quality Research, 11, 128–139.

    Article  CAS  Google Scholar 

  • Hassan, I. A., Basahi, J. M., Ismail, I. M., & Habeebullah, T. M. (2013). Spatial distribution and temporal variation in ambient ozone and its associated NOx in the atmosphere of Jeddah City, Saudi Arabia. Aerosol and Air Quality Research, 13, 1712–1722.

    Article  CAS  Google Scholar 

  • Im, U., Incecik, S., Guler, M., Tek, A., Topcu, S., Unal, Y. S., et al. (2013). Analysis of surface ozone and nitrogen oxides at urban, semi-rural and rural sites in Istanbul, Turkey. Science of the Total Environment, 443, 920–931.

    Article  CAS  Google Scholar 

  • Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 51–63.

    Article  CAS  Google Scholar 

  • Jerrett, M., Burnett, R. T., Ma, R., Pope, C. A. I. I. I., Krewski, D., Newbold, K. B., et al. (2005). Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 16(6), 727–736.

    Article  Google Scholar 

  • Molina, M. J., & Molina, L. T. (2004). Megacities and atmospheric pollution. Journal of the Air and Waste Management Association, 54(6), 644–680.

    Article  CAS  Google Scholar 

  • Ontario (1991) A guideline to the Ontario Air Quality Index System. Ontario Ministry of the Environment, Toronto, Ont. Canada ISBN 0-7729-8230-9 Air Resource Branch.

  • ORAQI. (1970). Oak Ridge air quality index. In W. R. Ott (Ed.), Environmental indices theory and practice. Ann Arbor: The University of Michigan Ann Arbor Science.

    Google Scholar 

  • Ordonez, C., Mathis, H., Furger, M., Henne, S., Hoglin, C., Staehelin, J., et al. (2005). Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmospheric Chemistry and Physics, 5, 1187–1203.

    Article  CAS  Google Scholar 

  • Ranchi Municipal Corporation (RMC) (2012) Ward-wise population data of 2010 in RMC obtained through personal request at the office during April 2012.

  • Ratcliffe, J., & McCullagh, M. J. (1998). Hotbeds of crime and the search for spatial accuracy. In Paper presented to the second crime mapping research center conference: Mapping Out Crime, Arlington, VA, pp. 10–12

  • Sharma, M., Maheshwari, M., Sengupta, B., & Shukla, B. P. (2003). Design of a website for dissemination of air quality index in India. Environmental Modelling and Software, 18(5), 405–411.

    Article  Google Scholar 

  • Shi, J., Wang, H., Xu, J., Wu, J., Liu, X., Zhu, H., et al. (2007). Spatial distribution of heavy metals in soils: A case study of Changxing, China. Environmental Geology, 52(1), 1–10.

    Article  CAS  Google Scholar 

  • Sikder, H. A., Nasiruddin, M., Suthawaree, J., Kato, S., & Kajii, Y. (2013). Long term observation of surface O3 and its precursors in Dhaka, Bangladesh. Atmospheric Research, 122, 378–390.

    Article  CAS  Google Scholar 

  • U.K. (1998). Air pollutionWhat it means for your health. Department of the Environment, Transport and the Regions. PO BOX No 236, Wetherby LS23 7NB, U.K.

  • U.S. EPA (1998) Federal Register 63(236). Wednesday, December 9, 1998.

  • U.S. EPA (2009) Assessment of the impacts of global change on regional U.S. Air Quality: A synthesis of climate change impacts on ground-level ozone. United States Environmental Protection Agency, Washington, DC.

  • WHO (2000) Guidelines for air quality. World Health Organization, Geneva. pp. 190.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gorai.

Appendix

Appendix

Stn. no.

Ward no.

Benchmark

Latitude

Longitude

1

7

BIT More

23°23′42.5″N

85°23′04.3″E

2

5

Jhumar Bridge

23°24′32.7″N

85°24′05.8″E

3

Outside the RMC boundary

Booty More

23°25′32″N

85°54′43.6″E

4

5

D.A.V School

23°24′01.3″N

85°22′22″E

5

4

RIMS Gate Ranchi

23°23′31.4″N

85°20′48.1″E

6

3

Tagore Hill More

23°24′00.4″N

85°20′18.8″E

7

Outside the RMC boundary

IICM

23°25′28.5″N

85°19′01.3″E

8

Outside the RMC boundary

New Dump Site, Jhiri

23°24′37.9″N

85°15′27.8″E

9

34

Piska More

23°22′54.6″N

85°17′49.7′′E

10

Outside the RMC boundary

Pandra Gate

23°23′18.5″N

85°15′44.7″E

11

15

Karbala Chowk

23°21′41.8″N

85°19′45.6″E

12

2

Rock Garden main gate

23°24′06.2 N

85°18′54.1″E

13

1

Jawahar Nagar

23°23′22.6″N

85°18′51.6″E

14

22

Katchari Chowk

23°22′43.7″N

85°19′30.0″E

15

22

Ranchi College More

23°23′00.9″N

85°19′09.7″E

16

30

Ratu Road Chowk

23°22′43.9″N

85°18′55.7″E

17

23

St. Xaviers Chowk

23°22′07.7″N

85°19′29.1″E

18

3

Karmatoli Chowk

23°23′18.9″N

85°19′51.5″E

19

Outside the RMC boundary

Katal more

23°21′48.1″N

85°15′04.3″E

20

Outside the RMC boundary

Namkum Chowk

23°19′47.5″N

85°22′38.2″E

21

45

Birsa Chowk

23°19′24.1 N

85°18′25.3″E

22

50

Doranda

23°20′19.8″N

85°19′27.8″E

23

15

Sujata Chowk

23°21′11.4″N

85°19′29.2″E

24

14

Ranchi Station

23°21′0.7″N

85°20′46.6″E

25

14

KFC more

23°21′13.4″N

85°19′58.6E

26

38

Algora Chowk

23°21′00.2″N

85°17′52.4″E

27

11

Carmel School

23°21′32.3″N

85°21′35″E

28

12

ESCI Hosital

23°21′5.2″N

85°22′0.4″E

29

8

Kokar Chowk

23°22′37.7″N

85°21′34.4″E

30

14

Lower Chutiya

23°21′2.3″N

85°21′7.4″E

31

10

Katatoli chowk

23°21′53.2″N

85°20′42.8″E

32

10

Lalpur chowk

23°22′19″N

85°20′18.5″E

33

Outside the RMC boundary

B.I.T Gate

23°23′35.2″N

85°25′52.5″E

34

Outside the RMC boundary

Birsa Agri. College

23°26′33.6″N

85°18′48.4″E

35

42

Dhurwa Golchakar

23°18′20.4″N

85°17′25.1″E

36

Outside the RMC boundary

Dhurwa Dam

23°17′33.7″N

85°15′32.2″E

37

Outside the RMC boundary

Tantan Toli

23°16′15.3″N

85°14′53.8″E

38

55

Hulhundu

23°15′30.7″N

85°18′08.2″E

39

Outside the RMC boundary

Singhmore

23°18′09.7″N

85°18 51.4″E

40

52

Hinoo

23°19′44.4″N

85°18′55.2″E

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorai, A.K., Biswal, S.S. & Mitra, G. Effects of meteorology on ground-level ozone (GLO) concentrations and identifying the hot spots having significantly higher GLO concentration in a semi-urban area. Environ Dev Sustain 20, 1461–1481 (2018). https://doi.org/10.1007/s10668-017-9947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-9947-3

Keywords

Navigation