Skip to main content

Advertisement

Log in

Groundwater: a regional resource and a regional governance

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Groundwater is a valuable renewable resource for human life. The two major threatening issues being faced by groundwater are its depletion and degradation which affect both the quantity and the quality of groundwater. Though scientific output has progressed well ahead in the domain of groundwater, very little has been done with respect to the establishment of the groundwater governance framework. Groundwater is perceived as a widely distributed resource, but it is fundamentally a local entity. The paper presents the groundwater governance framework from the regional perspective of Fatehgarh Sahib district of Punjab, India—an over-exploited groundwater region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal, R., Kaushal, M., Kaur, S., & Farmaha, B. (2009). Water resource management for sustainable agriculture in Punjab, India. Water Science and Technology, 60(11), 2905–2911.

    Article  Google Scholar 

  • Almasri, M. N. (2007). Nitrate contamination of groundwater: A conceptual management framework. Environmental Impact Assessment Review, 27(3), 220–242.

    Article  Google Scholar 

  • Amini, M., Abbaspour, K. C., Berg, M., Winkel, L., Hug, S. J., Hoehn, E., et al. (2008). Statistical modeling of global geogenic arsenic contamination in groundwater. Environmental Science and Technology, 42(10), 3669–3675.

    Article  CAS  Google Scholar 

  • Aulakh, M. S., Khurana, M. P. S., & Singh, D. (2009). Water pollution related to agricultural, industrial, and urban activities, and its effects on the food chain: Case studies from Punjab. Journal of New Seeds, 10(2), 112–137.

    Article  Google Scholar 

  • Baker, R. S., Nielsen, S. G., Heron, G., & Ploug, N. (2016). How effective is thermal remediation of DNAPL source zones in reducing groundwater concentrations? Groundwater Monitoring and Remediation, 36(1), 38–53.

    Article  CAS  Google Scholar 

  • Balke, K.-D., & Zhu, Y. (2008). Natural water purification and water management by artificial groundwater recharge. Journal of Zhejiang University SCIENCE B, 9(3), 221–226.

    Article  Google Scholar 

  • Bamaga, O. A., Al-Sharif, S. F., Balkhair, K. S., Gzara, L., & Albeirutty, M. (2016). Improvement of urban water cycle and mitigation of groundwater table rise through advanced membrane desalination of shallow urban brackish groundwater of Jeddah basin. Desalination and Water Treatment, 57(1), 124–135.

    CAS  Google Scholar 

  • Banerjee, A. (2015). Groundwater fluoride contamination: A reappraisal. Geoscience Frontiers, 6(2), 277–284.

    Article  CAS  Google Scholar 

  • Barth, S. (1998). Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Research, 32(3), 685–690.

    Article  CAS  Google Scholar 

  • Ben Slimene, E., Lassabatere, L., Winiarski, T., & Gourdon, R. (2015). Modeling water infiltration and solute transfer in a heterogeneous vadose zone as a function of entering flow rates. Journal of Water Resource and Protection, 7, 1017–1028.

    Article  Google Scholar 

  • Böhlke, J.-K. (2002). Groundwater recharge and agricultural contamination. Hydrogeology Journal, 10(1), 153–179.

    Article  Google Scholar 

  • Bouwer, H. (2002). Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology Journal, 10(1), 121–142.

    Article  CAS  Google Scholar 

  • Bukowski, J., Somers, G., & Bryanton, J. (2001). Agricultural contamination of groundwater as a possible risk factor for growth restriction or prematurity. Journal of Occupational and Environmental Medicine, 43(4), 377–383.

    Article  CAS  Google Scholar 

  • Central Ground Water Board. (2014). Water quality issues and challenges in Punjab. Faridabad: M. o. W. Resources.

    Google Scholar 

  • Chakraborty, M., Mukherjee, A., & Ahmed, K. M. (2015). A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: From Source to Sink. Current Pollution Reports, 1(4), 220–247.

    Article  CAS  Google Scholar 

  • Datta, P. S., Deb, D. L., & Tyagi, S. K. (1997). Assessment of groundwater contamination from fertilizers in the Delhi area based on 180, N03− and K+ composition. Journal of Contaminant Hydrology, 27(3), 249–262.

    Article  CAS  Google Scholar 

  • Davis, E. L. (1998). Steam injection for soil and aquifer remediation. Ground Water Issue, 540, 1–16.

    Google Scholar 

  • Dhillon, K. S., & Dhillon, S. K. (2003). Quality of underground water and its contribution towards selenium enrichment of the soil–plant system for a seleniferous region of northwest India. Journal of Hydrology, 272(1–4), 120–130.

    Article  CAS  Google Scholar 

  • Dhillon, K. S., & Dhillon, S. K. (2016). Selenium in groundwater and its contribution towards daily dietary Se intake under different hydrogeological zones of Punjab, India. Journal of Hydrology, 533, 615–626.

    Article  CAS  Google Scholar 

  • Eulenstein, F., Saparov, A., Lukin, S., Sheudshen, A. K., Mayer, W. H., Dannowski, R., et al. (2016). Assessing and controlling land use impacts on groundwater quality. In L. Mueller, K. A. Sheudshen, & F. Eulenstein (Eds.), Novel methods for monitoring and managing land and water resources in Siberia (pp. 635–665). Cham: Springer.

    Chapter  Google Scholar 

  • Farhadian, M., Vachelard, C., Duchez, D., & Larroche, C. (2008). In situ bioremediation of monoaromatic pollutants in groundwater: A review. Bioresource technology, 99(13), 5296–5308.

    Article  CAS  Google Scholar 

  • Farooqi, A., Masuda, H., Siddiqui, R., & Naseem, M. (2009). Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan. Archives of Environmental Contamination and Toxicology, 56(4), 693–706.

    Article  CAS  Google Scholar 

  • Finizio, A., & Villa, S. (2002). Environmental risk assessment for pesticides: A tool for decision making. Environmental Impact Assessment Review, 22(3), 235–248.

    Article  Google Scholar 

  • Foster, S., & Garduño, H. (2013). Groundwater-resource governance: Are governments and stakeholders responding to the challenge? Hydrogeology Journal, 21(2), 317–320.

    Article  Google Scholar 

  • Foster, S., Garduno, H., Tuinhof, A., & Tovey, C. (2010). Groundwater governance: conceptual framework for assessment of provisions and needs: GW MATE strategic overview series (Vol. 1). Washington, DC: World Bank.

    Google Scholar 

  • Ghayoumian, J., Mohseni Saravi, M., Feiznia, S., Nouri, B., & Malekian, A. (2007). Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. Journal of Asian Earth Sciences, 30(2), 364–374.

    Article  Google Scholar 

  • Giordano, M. (2009). Global groundwater? Issues and solutions. Annual Review of Environment and Resources, 34(1), 153–178.

    Article  Google Scholar 

  • Gogu, C. R., & Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39(6), 549–559.

    Article  CAS  Google Scholar 

  • Gupta, J., & Vegelin, C. (2016). Sustainable development goals and inclusive development. International Environmental Agreements: Politics, Law and Economics, 16(3), 433–448.

    Article  Google Scholar 

  • Haase, D. (2009). Effects of urbanisation on the water balance—A long-term trajectory. Environmental Impact Assessment Review, 29(4), 211–219.

    Article  Google Scholar 

  • Hatzinger, P. B., Whittier, M. C., Arkins, M. D., Bryan, C. W., & Guarini, W. J. (2002). In-situ and ex-situ bioremediation options for treating perchlorate in groundwater. Remediation Journal, 12(2), 69–86.

    Article  Google Scholar 

  • Hellström, D., Jeppsson, U., & Kärrman, E. (2000). A framework for systems analysis of sustainable urban water management. Environmental Impact Assessment Review, 20(3), 311–321.

    Article  Google Scholar 

  • Heron, G., Parker, K., Galligan, J., & Holmes, T. C. (2009). Thermal treatment of eight CVOC source zones to near nondetect concentrations. Ground Water Monitoring and Remediation, 29(3), 56–65.

    Article  CAS  Google Scholar 

  • Howard, K. W. F. (2015). Sustainable cities and the groundwater governance challenge. Environmental Earth Sciences, 73(6), 2543–2554.

    Article  Google Scholar 

  • Karkra, R., Kumar, P., Bansod, B. K. S., & Krishna, C. R. (2016a). Analysis of heavy metal ions in potable water using soft computing technique. Procedia Computer Science, 93, 988–994.

    Article  Google Scholar 

  • Karkra, R., Kumar, P. Bansod, B. K. S., Bagchi, S., Sharma, P., & Krishna, C. R. (2016b). Classification of heavy metal ions present in multi-frequency multi-electrode potable water data using evolutionary algorithm. Applied Water Science, 7, 1–11.

    Google Scholar 

  • Kosusko, M., Mullins, M. E., Ramanathan, K., & Rogers, T. N. (1988). Catalytic oxidation of groundwater stripping emissions. Environmental Progress, 7(2), 136–142.

    Article  CAS  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2004). Heavy metal contamination of soil around Pali Industrial Area, Rajasthan, India. Environmental Geology, 47(1), 38–44.

    Article  CAS  Google Scholar 

  • Kulkarni, H., Shah, M., & Vijay Shankar, P. S. (2015). Shaping the contours of groundwater governance in India. Journal of Hydrology: Regional Studies, 4, 172–192.

    Google Scholar 

  • Kulkarni, H., & Shankar, P. S. V. (2009). Groundwater: Towards an aquifer management framework. Economic and Political Weekly, 44(6), 13–17.

    Google Scholar 

  • Kumar, P., Bansod, B. K., Debnath, S. K., Thakur, P. K., & Ghanshyam, C. (2015). Index-based groundwater vulnerability mapping models using hydrogeological settings: a critical evaluation. Environmental Impact Assessment Review, 51, 38–49.

    Article  Google Scholar 

  • Kumar, T., Gautam, A. K., & Jhariya, D. C. (2016a). Multi-criteria decision analysis for planning and management of groundwater resources in Balod District, India. Environmental Earth Sciences, 75(8), 1–16.

    Article  Google Scholar 

  • Kumar, R., Kumar, R., Mittal, S., Arora, M., & Babu, J. N. (2016b). Role of soil physicochemical characteristics on the present state of arsenic and its adsorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India. Journal of Soils and Sediments, 16(2), 605–620.

    Article  CAS  Google Scholar 

  • Kumar, P., Thakur, P. K., Bansod, B. K., & Debnath, S. K. (2016c). Groundwater vulnerability assessment of Fatehgarh Sahib district, Punjab, India. In Proceedings of India international science festival (IISF)young scientists’ conclave (YSC), Dec 8–11, 2016, National Physical Laboratory, Ministry of Science and Technology.

  • Kumar, P., Thakur, P. K., Bansod, B. K. S., & Debnath, S. K. (2016d). Assessment of the effectiveness of DRASTIC in predicting the vulnerability of groundwater to contamination: a case study from Fatehgarh Sahib district in Punjab, India. Environmental Earth Sciences, 75(10), 1–13.

    Article  Google Scholar 

  • Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). In-situ remediation approaches for the management of contaminated sites: A comprehensive overview. In P. de Voogt (Ed.), Reviews of environmental contamination and toxicology (Vol. 236, pp. 1–115). Cham: Springer.

    Google Scholar 

  • Maleksaeidi, H., Karami, E., Zamani, G. H., Rezaei-Moghaddam, K., Hayati, D., & Masoudi, M. (2016). Discovering and characterizing farm households’ resilience under water scarcity. Environment, Development and Sustainability, 18(2), 499–525.

    Article  Google Scholar 

  • Marley, M. C., Hazebrouck, D. J., & Walsh, M. T. (1992). The application of in situ air sparging as an innovative soils and ground water remediation technology. Ground Water Monitoring and Remediation, 12(2), 137–145.

    Article  CAS  Google Scholar 

  • McCray, J. E., & Falta, R. W. (1996). Defining the air sparging radius of influence for groundwater remediation. Journal of Contaminant Hydrology, 24(1), 25–52.

    Article  CAS  Google Scholar 

  • Ministry of MSME, G. o. I. (2011). Brief Industrial Profile Of District FATEHGARH SAHIB. Ludhaian: S. M. E. D. I. Micro, Govt. of India, Ministry of MSME.

    Google Scholar 

  • Minsker, B. S., & Shoemaker, C. A. (1998). Dynamic optimal control of in-situ bioremediation of ground water. Journal of Water Resources Planning and Management, 124(3), 149–161.

    Article  Google Scholar 

  • Mittal, S., Kaur, G., & Vishwakarma, G. S. (2014). Effects of environmental pesticides on the health of rural communities in the Malwa Region of Punjab, India: A review. Human and Ecological Risk Assessment: An International Journal, 20(2), 366–387.

    Article  CAS  Google Scholar 

  • Mukherji, A., & Shah, T. (2005). Groundwater socio-ecology and governance: a review of institutions and policies in selected countries. Hydrogeology Journal, 13(1), 328–345.

    Article  Google Scholar 

  • Nagarajan, R., Rajmohan, N., Mahendran, U., & Senthamilkumar, S. (2010). Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environmental Monitoring and Assessment, 171(1), 289–308.

    Article  CAS  Google Scholar 

  • NGWA. (1999). Principles of induced infiltration and artificial recharge. Ground Water Hydrology for Water Well Contractors. Westerville: NGWA Press publication.

    Google Scholar 

  • Niroula, G. S., & Thapa, G. B. (2005). Impacts and causes of land fragmentation, and lessons learned from land consolidation in South Asia. Land Use Policy, 22(4), 358–372.

    Article  Google Scholar 

  • Ogden, F. L., Lai, W., Steinke, R. C., Zhu, J., Talbot, C. A., & Wilson, J. L. (2015). A new general 1-D vadose zone flow solution method. Water Resources Research, 51(6), 4282–4300.

    Article  Google Scholar 

  • Pandey, R. (2016). Groundwater irrigation in Punjab: Some issues and a way forward. In L. Singh & N. Singh (Eds.), Economic transformation of a developing economy: The experience of Punjab, India (pp. 97–117). Singapore: Springer.

    Chapter  Google Scholar 

  • Rabideau, A. J., Blayden, J. M., & Ganguly, C. (1999). field performance of air-sparging system for removing TCE from groundwater. Environmental Science and Technology, 33(1), 157–162.

    Article  CAS  Google Scholar 

  • Ramakrishnaiah, C. R., Sadashivaiah, C., & Ranganna, G. (2009). Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. E-Journal of Chemistry, 6(2), 523–530.

    Article  CAS  Google Scholar 

  • Rao, S. M., Asha, K., & Shivachidambaram, S. (2013). Influence of anthropogenic contamination on groundwater chemistry in Mulbagal town, Kolar District, India. Geosciences Journal, 17(1), 97–106.

    Article  CAS  Google Scholar 

  • Rasool, A., Farooqi, A., Masood, S., & Hussain, K. (2016). Arsenic in groundwater and its health risk assessment in drinking water of Mailsi, Punjab, Pakistan. Human and Ecological Risk Assessment: An International Journal, 22(1), 187–202.

    Article  CAS  Google Scholar 

  • Saha, D., & Sahu, S. (2016). A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India. Environmental Geochemistry and Health, 38(2), 315–337.

    Article  CAS  Google Scholar 

  • Saigal, S. K. (2007). Ground water information booklet Fatehgarh Sahib District, Punjab. Chandigarh: Central Groundwater Board North Western Region.

    Google Scholar 

  • Shah, T. (2005). Groundwater and human development: challenges and opportunities in livelihoods and environment. Water Science and Technology, 51(8), 27–37.

    CAS  Google Scholar 

  • Shah, T. (2014). Groundwater governance and irrigated agriculture. Global Water Partnership Technical Committee (TEC).

  • Shah, T., Roy, A. D., Qureshi, A. S., & Wang, J. (2003). Sustaining Asia’s groundwater boom: An overview of issues and evidence. Natural Resources Forum, 27(2), 130–141.

    Article  Google Scholar 

  • Sharma, C., Mahajan, A., & Kumar Garg, U. (2016). Fluoride and nitrate in groundwater of south-western Punjab, India—occurrence, distribution and statistical analysis. Desalination and Water Treatment, 57(9), 3928–3939.

    Article  CAS  Google Scholar 

  • Sikdar, P. K., Sahu, P., Sinha Ray, S. P., Sarkar, A., & Chakraborty, S. (2013). Migration of arsenic in multi-aquifer system of southern Bengal Basin: analysis via numerical modeling. Environmental Earth Sciences, 70(4), 1863–1879.

    Article  CAS  Google Scholar 

  • Singh, Baldev. (1998). Geoenvironmental appraisal of Fatehgarh Sahib District, Punjab. Kolkatta: Geodata Division, NR, GSI.

    Google Scholar 

  • Sprenger, M., Volkmann, T. H. M., Blume, T., & Weiler, M. (2015). Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes. Hydrology and Earth System Sciences, 19(6), 2617–2635.

    Article  Google Scholar 

  • Srinivasa Gowd, S., Ramakrishna Reddy, M., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174(1–3), 113–121.

    Article  CAS  Google Scholar 

  • Suthar, S., Bishnoi, P., Singh, S., Mutiyar, P. K., Nema, A. K., & Patil, N. S. (2009). Nitrate contamination in groundwater of some rural areas of Rajasthan, India. Journal of Hazardous Materials, 171(1–3), 189–199.

    Article  CAS  Google Scholar 

  • Tariq, M. I., Afzal, S., & Hussain, I. (2004). Pesticides in shallow groundwater of Bahawalnagar, Muzafargarh, D.G. Khan and Rajan Pur districts of Punjab, Pakistan. Environment International, 30(4), 471–479.

    Article  CAS  Google Scholar 

  • Tengberg, A. (2015). World water week 2015. Environment, Development and Sustainability, 17(6), 1247–1249.

    Article  Google Scholar 

  • Thakur, T., Rishi, M. S., Naik, P. K., & Sharma, P. (2016). Elucidating hydrochemical properties of groundwater for drinking and agriculture in parts of Punjab, India. Environmental Earth Sciences, 75(6), 1–15.

    Article  CAS  Google Scholar 

  • Tinet, A. J., Chanzy, A., Braud, I., Crevoisier, D., & Lafolie, F. (2015). Development and evaluation of an efficient soil-atmosphere model (FHAVeT) based on the Ross fast solution of the Richards equation for bare soil conditions. Hydrology and Earth System Sciences, 19(2), 969–980.

    Article  Google Scholar 

  • Turkeltaub, T., Kurtzman, D., Bel, G., & Dahan, O. (2015). Examination of groundwater recharge with a calibrated/validated flow model of the deep vadose zone. Journal of Hydrology, 522, 618–627.

    Article  Google Scholar 

  • Tziritis, E., Skordas, K., & Kelepertsis, A. (2016). The use of hydrogeochemical analyses and multivariate statistics for the characterization of groundwater resources in a complex aquifer system. A case study in Amyros River basin, Thessaly, central Greece. Environmental Earth Sciences, 75(4), 1–11.

    Article  CAS  Google Scholar 

  • UNESCO’s International Hydrological Programme (UNESCO-IHP) (2015). Global framework for action to achieve the vision on groundwater governance.

  • Wezel, A., & Weizenegger, S. (2016). Rural agricultural regions and sustainable development: a case study of the Allgäu region in Germany. Environment, Development and Sustainability, 18(3), 717–737.

    Article  Google Scholar 

  • White, D., Lapworth, D. J., Stuart, M. E., & Williams, P. J. (2016). Hydrochemical profiles in urban groundwater systems: New insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants. Science of the Total Environment, 562, 962–973.

    Article  CAS  Google Scholar 

  • Williams, A. E., Lund, L. J., Johnson, J. A., & Kabala, Z. J. (1998). Natural and anthropogenic nitrate contamination of groundwater in a rural community, California. Environmental Science and Technology, 32(1), 32–39.

    Article  CAS  Google Scholar 

  • Zektser, I. S., Potapova, E. Y., Chetverikova, A. V., & Shtengelov, R. S. (2012). Perspectives of artificial recharge of groundwater in southern European Russia. Water Resources, 39(6), 672–684.

    Article  CAS  Google Scholar 

  • Zhu, X.-H., Lyu, S.-S., Zhang, P.-P., Chen, X.-G., Wu, D.-D., & Ye, Y. (2016). Heavy metal contamination in the lacustrine sediment of a plateau lake: influences of groundwater and anthropogenic pollution. Environmental Earth Sciences, 75(2), 1–14.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Water Supply and Sanitation Department, Punjab, for the laboratory-based data of water quality parameters of Fatehgarh Sahib district of Punjab. The authors express sincere gratitude to the reviewers and the editors for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Thakur, P.K., Bansod, B.K.S. et al. Groundwater: a regional resource and a regional governance. Environ Dev Sustain 20, 1133–1151 (2018). https://doi.org/10.1007/s10668-017-9931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-9931-y

Keywords