Production of benzyl carbonyl (rose aroma) from whey and its effect on pollutant load removal

Abstract

Untreated whey, which is generated in the cheese industry, is a problem of pollution because of its high organic load (HOL). Due to its richness in lactose and protein, whey can be used to produce compounds of interest, such as benzyl carbonyl (BC). BC has a rose aroma and is widely used in industry. There are few studies that used whey for the production of benzyl carbonyl, and there are virtually no nuclear magnetic resonance (NMR) analyses or studies of the effect of BC production on the reduction of HOL. The pH of sweet whey is adjusted to 4.8, which is later pasteurized at 63 °C/30 min with an initial inoculum of K. marxianus (1 × 106 CFU/mL). The NMR spectra are obtained using a spectrometer Varian® NMR, 400 MHz. The chemical oxygen demand is analyzed according to the APHA 2005 standard methods. The content of residual lactose is 0.45 g/L (96 h), with an efficiency of removal up to 99.10%. The efficiency of removal of ACO up to 97.58% is obtained, which is superior to the value previously reported in the literature, with an initial HOL concentration of 50,583 mgO2/L. The maximum throughput of BC was 1.205 g/L (48 h). The 1H NMR spectra of sweet whey presented BC signal characteristics, with two signal triplets (J = 6.4 Hz) at δ 3.9 and 3.0 ppm, which correspond to hydrogens bonded to the hydroxyl, and at δ 7.15–7.35, which correspond to aromatic hydrogens.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Achmon, Y., Zelas, Z., & Fishman, A. (2013). Cloning Rosa hybrid phenylacetaldehy de synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system. Applied Microbiology and Biotechnology. doi:10.1007/s00253-013-5269-z.

    Article  Google Scholar 

  2. Aggelopoulos, T., Katsieris, K., Bekatorou, A., Pandey, A., Banat, M. I., & Koutinas, A. A. (2014). Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, 145, 710–716.

    Article  CAS  Google Scholar 

  3. Aktas, N., Boyaci, H. I., Mutlu, M., & Abdurrahman, T. (2006). Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RMS). Bioresource Technology, 97, 2252–2259.

    Article  CAS  Google Scholar 

  4. Araujo, K., Páez, G., Mármol, Z., Ferrer, J., Ramones, E., Mazzarri, C. I., et al. (2007). Effect of lactose concentration on the grow kinetics of Kluyveromyces marxianus var. marxianus and production of β-D-galactosidade (E.C. 3.2.1.23). Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 1, 64–73.

    Google Scholar 

  5. Carrasco, C. A., & Guerra, M. (2010). Whey as a source of bioactive peptides. Anales Venezolanos de Nutrición, 23, 42–49.

    Google Scholar 

  6. Carvalho, F., Prazeres, R. A., & Rivas, J. (2013). Cheese whey wastewater: Characterization and treatment. Science of the Total Environment, 445–446, 385–396.

    Article  CAS  Google Scholar 

  7. Celińska, E., Kubiak, P., Bialas, W., Dziadas, M., & Grajek, W. (2013). Yarrowia lipolytica: The novel and promising 2-phenylethanol producer. Journal of Industrial Microbiology and Biotechnology, 40, 389–392.

    Article  CAS  Google Scholar 

  8. Davila-Vazquez, G., Alatriste-Mondragón, F., de León-Rodríguez, A., & Razo-Flores, E. (2008). Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH. International Journal of Hydrogen Energy, 33(19), 4989–4997.

    Article  CAS  Google Scholar 

  9. Dragone, G., Mussatto, I. S., Oliveira, M. J., & Teixeira, A. J. (2009). Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry, 112, 929–935.

    Article  CAS  Google Scholar 

  10. Etschmann, M. M. W., Bluemke, W., Sell, D., & Schrader, J. (2002). Biotechnological production of 2-phenylethanol. Applied Microbiology and Biotechnology, 59, 1–8.

    Article  CAS  Google Scholar 

  11. Etschmann, M. M. W., Sell, D., & Schrader, J. (2004). Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. Journal of Molecular Catalysis. B, Enzymatic, 29, 187–193.

    Article  CAS  Google Scholar 

  12. Fang, G., & Daugulis, A. (2009). Bioproduction of the aroma compound 2-phenylethanol in a solid-liquid two-phase partitioning bioreactor system by Kluyveromyces marxianus. Biotechnology and Bioengineering, 104, 332–339.

    Article  CAS  Google Scholar 

  13. Gannoun, H., Khelifi, E., Bouallagui, H., Touhami, Y., & Hamdi, M. (2008). Ecological clarification of cheese whey prior to anaerobic digestion in upflow anaerobic filter. Bioresource Technology, 99, 6105–6111.

    Article  CAS  Google Scholar 

  14. Garavaglia, J., Hickmann, F. S., Mara, P. T., Carmo, P. M., & Záchia, A. M. (2007). Bioconversion of l-phenylalanine into 2-phenylethanol by Kluyveromyces marxianus in grape must cultures. World Journal of Microbiology & Biotechnology, 23, 1273–1279.

    Article  CAS  Google Scholar 

  15. Groeneveld, P., Stouthamer, A. H., & Westerhoff, H. V. (2009). Super life—how and why’cell selection’ leads to the fastest-growing eukary-ote. Federation of European Biochemical Societies Journal, 276, 254–270.

    CAS  Google Scholar 

  16. Guimarães, M. R., Teixeira, A. J., & Domingues, L. (2010). Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnology Advances, 28, 375–384.

    Article  CAS  Google Scholar 

  17. Hadiyantoa, L., Ariyantia, D., Ainia, P. A., & Pinundia, S. D. (2014). Optimization of ethanol production from whey through fed-batch fermentation using Kluyveromyces marxianus. Energy Procedia, 47, 108–112.

    Article  CAS  Google Scholar 

  18. Hazelwood, L. A., Daran, J. M., & van Maris, A. J. A. (2008). The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology, 74, 2259–2266.

    Article  CAS  Google Scholar 

  19. Holland, B., Yazdi, S. R., Titapiccolo, G. I., & Corredig, M. (2010). Separation and quantification of caseins and casein macropeptide using ion-exchange chromatography. Journal of Dairy Science, 93, 893–900.

    Article  CAS  Google Scholar 

  20. Horstch, R., Loser, C., & Bley, T. (2008). A two-stage CSTR cascade for studying the effect of inhibitory and toxic substances in bioprocesses. Engineering in Life Sciences, 6, 650–657.

    Google Scholar 

  21. Jawad, R., Elleman, C., Vermeer, L., Drake, F. A., Woodhead, B., Martín, G. P., et al. (2012). The measurement of the β/α anomer composition within amorphous lactose prepared by spray and freeze drying using a simple 1H-NMR method. Pharmaceutical Research, 29, 511–524.

    Article  CAS  Google Scholar 

  22. Lomascolo, A., Lesage, M. L., Haon, M., Navarro, D., Antona, C., Faulds, C., et al. (2001). Evaluation of the potential of Aspergillus niger species for the bioconversion of l-phenylalanine into 2-phenylethanol. World Journal of Microbiology & Biotechnology, 17, 99–102.

    Article  CAS  Google Scholar 

  23. Lu, X., Wang, Y., Zong, H., Ji, H., Zhuge, B., & Dong, Z. (2016). Bioconversion of L-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5. Bioengineered, 6, 418–423.

    Article  CAS  Google Scholar 

  24. Lukondeh, T., Ashbolt, N. J., & Rogers, P. L. (2003). Evaluation of Kluyveromyces marxianus FII 510700 grown on a lactose-based medium as a source of a natural bioemulsifier. Journal of Industrial Microbiology and Biotechnology, 30, 715–720.

    Article  CAS  Google Scholar 

  25. Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science, 93, 437–455.

    Article  CAS  Google Scholar 

  26. Mihal, M., KriŠtofíková, L., & Marcŏs, J. (2013). Production of 2-phenylethanol in hybrid system using airlift reactor and immersed hollow fiber membrane module. Chemical Engineering and Processing, 72, 144–152.

    Article  CAS  Google Scholar 

  27. Morrissey, J. P., Maria, M., Etschmann, W., Schrader, J., & Billerbeck, G. M. (2015). Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavor and fragrance molecules. Yeast, 32, 3–16.

    CAS  Google Scholar 

  28. Páez, G., Pérez, A., Araujo, A., Mármol, Z., & Rincón, M. (2012). Effect of lactose concentration over β-D-galactosidase production by Kluyveromyces marxianus ATCC 8554 in fed batch cultures. Revista de la Sociedad Venezolana de Microbiología, 32, 50–54.

    Google Scholar 

  29. Páez-Lerma, J. B., Arias, G. A., Rutiaga, Q. O., Barrio, E., & Soto, C. N. (2014). Yeasts Isolated from the alcoholic fermentation of agave duranguensis during mezcal production. Food Biotechnology, 4, 27–34.

    Google Scholar 

  30. Paladino, S., Sánchez, M. L., & Maza, M. (2004). Yeast assimilable nitrogen effect on the fermentation rate of grape must (vitis vinifera l). Fca uncuyo, 1, 79–86.

    Google Scholar 

  31. Prazeres, A. R., Carvalho, F., & Rivas, J. (2013). Fenton-like application to pretreated cheese whey wastewater. Journal of Environmental Management, 129, 199–205.

    Article  CAS  Google Scholar 

  32. Ratanapariyanuch, K., Tyler, R., Young, Y. S., & Reaney, M. J. T. (2012). Biorefinery process for protein extraction from oriental mustard (Brassica juncea (L.) Czern.) using ethanol stillage. AMB Express, 1, 2–10.

    Google Scholar 

  33. Sánchez, D. R., Pérez, G. A., Codón, C. A., Benítez, T., & Rincón, A. M. (2014). Overproduction of 2-phenylethanol by industrial yeasts to improve organoleptic properties of bakers´ products. International Journal of Food Microbiology, 180, 7–12.

    Article  CAS  Google Scholar 

  34. Spălăţelu, C. (2012). Biotechnological valorisation of whey. Innovative Romanian Food Biotechnology, 10, 1–8.

    Google Scholar 

  35. Stark, D., Münch, T., Sonnleitner, B., Marison, I. W., & von Stockar, U. (2002). Extractive bioconversion of 2-phenylethanol from l-phenylalanine by Saccharomyces cerevisiae. Biotechnology Progress, 18, 514–523.

    Article  CAS  Google Scholar 

  36. Urbina, C. E., Muñoz, N. R., Manriquez, J. F., Ramírez, J. C., Ordaz, R. N., & Mayer, G. J. (2000). Batch andfed-batch cultures for the treatment of whey with mixed yeast cultures. Process Biochemistry, 35, 649–657.

    Article  Google Scholar 

  37. Wang, H., Dong, Q., Guan, A., Meng, C., Shi, X., & Guo, Y. (2011). Synergistic inhibition effect of 2-phenylethanol and ethanol on bioproduction of natural 2-phenylethanol by Saccharomyces cerevisiae and process enhancement. Journal of Bioscience and Bioengineering, 112, 26–31.

    Article  CAS  Google Scholar 

  38. Wittmann, C., Hans, M., & Bluemke, W. (2002). Metabolic physiology of aroma-producing Kluyveromyces marxianus. Yeast, 19, 1351–1363.

    Article  CAS  Google Scholar 

  39. Yadav, J. S. S., Bezawada, J., Ajila, C. M., Yan, S., Tyagi, R. D., & Surampalli, R. V. (2014). Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresource Technology, 164, 119–127.

    Article  CAS  Google Scholar 

  40. Zopellari, F., & Bardi, L. (2013). Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus. New Biotechnology, 30, 607–613.

    Article  CAS  Google Scholar 

  41. Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 6, 1875–1881.

    Google Scholar 

Download references

Acknowledgements

We are grateful to The National Science and Technology Council (CONACYT) for the support given and for the granted scholarship for the development of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. A. Gómez Aldapa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conde Báez, L., Castro Rosas, J., Villagómez Ibarra, J.R. et al. Production of benzyl carbonyl (rose aroma) from whey and its effect on pollutant load removal. Environ Dev Sustain 21, 609–619 (2019). https://doi.org/10.1007/s10668-017-0048-0

Download citation

Keywords

  • Benzyl carbonyl
  • Sweet whey
  • Chemical oxygen demand
  • NMR