Advertisement

Environment, Development and Sustainability

, Volume 20, Issue 2, pp 625–639 | Cite as

Assessment of hydrothermally modified fly ash for the treatment of methylene blue dye in the textile industry wastewater

  • Suman Mor
  • Manchanda K. Chhavi
  • Kansal K. Sushil
  • Khaiwal Ravindra
Article

Abstract

Dyes and pigments are one of the major water pollutants and if not discharged properly cause ecological disturbance. Considering this, the current study investigates the application of thermal power plant by-product, i.e., fly ash for the elimination of a hazardous methylene blue dye from its synthetic aqueous solution. Experiments were conducted in batch mode to study the effect of pH, temperature, adsorbent dose and contact time. Highest dye removal (94.3%) was achieved at pH 10 using adsorbent dose of 10 g/L in 90 min of contact time at 40 °C. However, for cost-effective operation at neutral pH and room temperature (30 °C), it yields 89.3% dye removal having similar dose and contact time. Equilibrium isotherms for adsorption were analyzed by Langmuir and Freundlich, Temkin and Dubinin–Radushkevich isotherm equations. The results revealed that the best fit model of adsorption closely followed Langmuir adsorption. Based on adsorption isotherm models, thermodynamics parameters ΔG, ΔH and ΔS were calculated. The negative value of ΔG and ΔH revealed that adsorption process was exothermic, spontaneous and physical. The present work suggests that through simple process hydrothermally modified fly ash has the potential to be used as cost-effective and efficient adsorbent for the treatment of wastewater from textile industries.

Keywords

Hydrothermal activation Waste material Fly ash Methylene blue Textile industry Radushkevich isotherm model 

Notes

Acknowledgements

The author would like to thank the DSTPURSE grant and Department of Health Research (DHR), Indian Council of Medical Research (ICMR), Ministry of Health and Family Welfare, for providing the Fellowship Training Programme in Environmental Health under Human Resource Development Health Research Scheme. The author is also thankful to CIL laboratory, Panjab University Chandigarh for their help in instrumentation.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Supplementary material

10668_2016_9902_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Ahmaruzzaman, M. (2009). Role of fly ash in the removal of organic pollutants from wastewater. Energy & Fuels, 23(3), 1494–1511. doi: 10.1021/ef8002697.CrossRefGoogle Scholar
  2. Abdalqader, A. F., Jin, F., & Al-Tabbaa, A. (2015). Development of greener alkali-activated cement: Utilisation of sodium carbonate for activating slag and fly ash mixtures. Journal of Cleaner Production, 113, 66–75. doi: 10.1016/j.jclepro.2015.12.010.CrossRefGoogle Scholar
  3. Ahmad, R., & Kumar, R. (2010). Adsorption studies of hazardous malachite green onto treated ginger waste. Journal of Environmental Management, 91(4), 1032–1038. doi: 10.1016/j.jenvman.2009.12.016.CrossRefGoogle Scholar
  4. Anirudhan, T. S., & Ramachandran, M. (2015). Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 95, 215–225. doi: 10.1016/j.psep.2015.03.003.CrossRefGoogle Scholar
  5. Arellano-Cárdenas, S., López-Cortez, S., Cornejo-Mazón, M., & Mares-Gutiérrez, J. C. (2013). Study of malachite green adsorption by organically modified clay using a batch method. Applied Surface Science, 280, 74–78. doi: 10.1016/j.apsusc.2013.04.097.CrossRefGoogle Scholar
  6. Bai, G., Qiao, Y., Shen, B., & Chen, S. (2011). Thermal decomposition of coal fly ash by concentrated sulfuric acid and alumina extraction process based on it. Fuel Processing Technology, 92(6), 1213–1219. doi: 10.1016/j.fuproc.2011.01.017.CrossRefGoogle Scholar
  7. Balarak, D., Jaafari, J., Hassani, G., Mahdavi, Y., Tyagi, I., Agarwal, S., et al. (2015). The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: Isotherm, kinetic and thermodynamic studies. Colloids and Interface Science Communications, 7, 16–19. doi: 10.1016/j.colcom.2015.11.004.CrossRefGoogle Scholar
  8. Banerjee, S., Sharma, G. C., Chattopadhyaya, M. C., & Sharma, Y. C. (2014). Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash (AFSH). Journal of Environmental Chemical Engineering, 2(3), 1870–1880. doi: 10.1016/j.jece.2014.06.020.CrossRefGoogle Scholar
  9. Bukhari, S. S., Behin, J., Kazemian, H., & Rohani, S. (2015). Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel, 140, 250–266. doi: 10.1016/j.fuel.2014.09.077.CrossRefGoogle Scholar
  10. Chaudhary, G. R., Saharan, P., Kumar, A., Mehta, S. K., Mor, S., & Umar, A. (2013a). Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 13(5), 3240–3245. doi: 10.1166/jnn.2013.7152.CrossRefGoogle Scholar
  11. Chaudhary, G. R., Saharan, P., Mehta, S. K., Mor, S., & Umar, A. (2013b). Fast and efficient removal of hazardous congo red from its aqueous solution using γ-Fe2O3 nanoparticles. Journal of Nanoengineering and Nanomanufacturing, 3(2), 142–146. doi: 10.1166/jnan.2013.1120.CrossRefGoogle Scholar
  12. Chaudhary, G. R., Saharan, P., Umar, A., Mehta, S. K., & Mor, S. (2014). γ-Fe2O3 nanospindles for environmental remediation: A study on the adsorption and desorption characteristics of acridine orange and direct red dyes. Journal of Nanoscience and Nanotechnology, 14(5), 3545–3551.CrossRefGoogle Scholar
  13. Chowdhury, S., Mishra, R., Saha, P., & Kushwaha, P. (2011). Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 265(1–3), 159–168. doi: 10.1016/j.desal.2010.07.047.CrossRefGoogle Scholar
  14. Doǧan, M., Abak, H., & Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. Journal of Hazardous Materials, 164(1), 172–181. doi: 10.1016/j.jhazmat.2008.07.155.CrossRefGoogle Scholar
  15. Doğan, M., Özdemir, Y., & Alkan, M. (2007). Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes and Pigments, 75(3), 701–713. doi: 10.1016/j.dyepig.2006.07.023.CrossRefGoogle Scholar
  16. Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2011). Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2011.07.021.Google Scholar
  17. Hor, K. Y., Chee, J. M. C., Chong, M. N., Jin, B., Saint, C., Poh, P. E., et al. (2016). Evaluation of physicochemical methods in enhancing the adsorption performance of natural zeolite as low-cost adsorbent of methylene blue dye from wastewater. Journal of Cleaner Production, 118, 197–209. doi: 10.1016/j.jclepro.2016.01.056.CrossRefGoogle Scholar
  18. Kaur, K., Mor, S., & Ravindra, K. (2016). Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent. Journal of Colloid and Interface Science, 469, 338–343. doi: 10.1016/j.jcis.2016.02.025.CrossRefGoogle Scholar
  19. Khodam, F., Rezvani, Z., & Amani-Ghadim, A. R. (2015). Enhanced adsorption of Acid Red 14 by co-assembled LDH/MWCNTs nanohybrid: Optimization, kinetic and isotherm. Journal of Industrial and Engineering Chemistry, 21, 1286–1294. doi: 10.1016/j.jiec.2014.06.002.CrossRefGoogle Scholar
  20. Kumar, K. V., & Kumaran, A. (2005). Removal of methylene blue by mango seed kernel powder. Biochemical Engineering Journal, 27, 83–93. doi: 10.1016/j.bej.2005.08.004.CrossRefGoogle Scholar
  21. Lin, L., Zhai, S.-R., Xiao, Z.-Y., Song, Y., An, Q.-D., & Song, X.-W. (2013). Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresource Technology, 136, 437–443. doi: 10.1016/j.biortech.2013.03.048.CrossRefGoogle Scholar
  22. Lin, J. X., Zhan, S. L., Fang, M. H., Qian, X. Q., & Yang, H. (2008). Adsorption of basic dye from aqueous solution onto fly ash. Journal of Environmental Management, 87(1), 193–200. doi: 10.1016/j.jenvman.2007.01.001.CrossRefGoogle Scholar
  23. Liu, K., Li, H., Wang, Y., Gou, X., & Duan, Y. (2015). Adsorption and removal of rhodamine B from aqueous solution by tannic acid functionalized graphene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 477, 35–41. doi: 10.1016/j.colsurfa.2015.03.048.CrossRefGoogle Scholar
  24. Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 264(1–3), 17–28. doi: 10.1016/j.colsurfa.2005.03.027.CrossRefGoogle Scholar
  25. Matheswaran, M., & Karunanithi, T. (2007). Adsorption of Chrysoidine R by using fly ash in batch process. Journal of Hazardous Materials, 145(1–2), 154–161. doi: 10.1016/j.jhazmat.2006.11.006.CrossRefGoogle Scholar
  26. Mittal, A. (2006). Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. Journal of Hazardous Materials, 133(1–3), 196–202. doi: 10.1016/j.jhazmat.2005.10.017.CrossRefGoogle Scholar
  27. Mittal, A., Kaur, D., Malviya, A., Mittal, J., & Gupta, V. K. (2009a). Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of Colloid and Interface Science, 337(2), 345–354. doi: 10.1016/j.jcis.2009.05.016.CrossRefGoogle Scholar
  28. Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. (2009b). Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. Journal of Colloid and Interface Science, 340(1), 16–26. doi: 10.1016/j.jcis.2009.08.019.CrossRefGoogle Scholar
  29. Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. (2010a). Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials Structure of Chrysoidine Y. Journal of Colloid and Interface Science, 344(2), 497–507. doi: 10.1016/j.jcis.2010.01.007.CrossRefGoogle Scholar
  30. Mittal, A., Mittal, J., Malviya, A., Kaur, D., & Gupta, V. K. (2010b). Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. Journal of Colloid and Interface Science, 342(2), 518–527. doi: 10.1016/j.jcis.2009.10.046.CrossRefGoogle Scholar
  31. Mor, S., Chhoden, K., & Khaiwal, R. (2016a). Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. Journal of Cleaner Production. doi: 10.1016/j.jclepro.2016.03.088.Google Scholar
  32. Mor, S., Chhoden, K., Negi, P., & Ravindra, K. (2016b). Utilization of nano-alumina and activated charcoal for phosphate removal from wastewater. Environmental Nanotechnology, Monitoring and Management. doi: 10.1016/j.enmm.2016.11.006.Google Scholar
  33. Mor, S., Manchanda, C. K., Kansal, S. K., & Ravindra, K. (2016). Nanosilica extraction from processed agricultural residue using green technology. Journal of Cleaner Production. doi: 10.1016/j.jclepro.2016.11.142.Google Scholar
  34. Mor, S., Ravindra, K., & Bishnoi, N. (2007). Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresource Technology, 98(4), 954–957. doi: 10.1016/j.biortech.2006.03.018.CrossRefGoogle Scholar
  35. Pengthamkeerati, P., Satapanajaru, T., Chatsatapattayakul, N., Chairattanamanokorn, P., & Sananwai, N. (2010). Alkaline treatment of biomass fly ash for reactive dye removal from aqueous solution. Desalination, 261(1–2), 34–40. doi: 10.1016/j.desal.2010.05.050.CrossRefGoogle Scholar
  36. Pengthamkeerati, P., Satapanajaru, T., & Singchan, O. (2008). Sorption of reactive dye from aqueous solution on biomass fly ash. Journal of Hazardous Materials, 153(3), 1149–1156. doi: 10.1016/j.jhazmat.2007.09.074.CrossRefGoogle Scholar
  37. Pua, F. L., Sajab, M. S., Chia, C. H., Zakaria, S., Rahman, I. A., & Salit, M. S. (2013). Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions. Journal of Environmental Chemical Engineering, 1(3), 460–465. doi: 10.1016/j.jece.2013.06.012.CrossRefGoogle Scholar
  38. Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2009.12.047.Google Scholar
  39. Rani, S., Sumanjit, K., & Mahajan, R. K. (2016). Synthesis of mesoporous material SBA-3 for adsorption of dye congo red. Desalination and Water Treatment, 57(8), 3720–3731.CrossRefGoogle Scholar
  40. Sadaf, S., Bhatti, H. N., Arif, M., Amin, M., Nazar, F., & Sultan, M. (2015). Box-Behnken design optimization for the removal of Direct Violet 51 dye from aqueous solution using lignocellulosic waste. Desalination and Water Treatment, 56(9), 2425–2437. doi: 10.1080/19443994.2014.968215.CrossRefGoogle Scholar
  41. Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1–3), 1–13. doi: 10.1016/j.desal.2011.07.019.CrossRefGoogle Scholar
  42. Singh, K., Gupta, A. B., & Sharma, A. K. (2016). Fly ash as low cost adsorbent for treatment of effluent of handmade paper industry-Kinetic and modelling studies for direct black dye. Journal of Cleaner Production, 112, 1227–1240. doi: 10.1016/j.jclepro.2015.09.058.CrossRefGoogle Scholar
  43. Subramaniam, R., & Kumar Ponnusamy, S. (2015). Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: Optimization by response surface methodology. Water Resources and Industry, 11, 64–70. doi: 10.1016/j.wri.2015.07.002.CrossRefGoogle Scholar
  44. Sun, D., Zhang, X., Wu, Y., & Liu, X. (2010). Adsorption of anionic dyes from aqueous solution on fly ash. Journal of Hazardous Materials, 181(1–3), 335–342. doi: 10.1016/j.jhazmat.2010.05.015.CrossRefGoogle Scholar
  45. Tan, P., Sun, J., Hu, Y., Fang, Z., Bi, Q., Chen, Y., et al. (2015). Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. Journal of Hazardous Materials, 297, 251–260. doi: 10.1016/j.jhazmat.2015.04.068.CrossRefGoogle Scholar
  46. Tavlieva, M. P., Genieva, S. D., Georgieva, V. G., & Vlaev, L. T. (2013). Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. Journal of Colloid and Interface Science, 409, 112–122. doi: 10.1016/j.jcis.2013.07.052.CrossRefGoogle Scholar
  47. Tolba, G. M. K., Barakat, N. A. M., Bastaweesy, A. M., Ashour, E. A., Abdelmoez, W., El-Newehy, M. H., et al. (2015). Effective and highly recyclable nanosilica produced from the rice husk for effective removal of organic dyes. Journal of Industrial and Engineering Chemistry, 29, 134–145. doi: 10.1016/j.jiec.2015.03.025.CrossRefGoogle Scholar
  48. Vargas, A. M. M., Martins, A. C., & Almeida, V. C. (2012). Ternary adsorption of acid dyes onto activated carbon from flamboyant pods (Delonix regia): Analysis by derivative spectrophotometry and response surface methodology. Chemical Engineering Journal, 195–196, 173–179. doi: 10.1016/j.cej.2012.04.090.CrossRefGoogle Scholar
  49. Visa, M., & Chelaru, A.-M. (2014). Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Applied Surface Science, 303, 14–22. doi: 10.1016/j.apsusc.2014.02.025.CrossRefGoogle Scholar
  50. Wang, S., Boyjoo, Y., Choueib, A., & Zhu, Z. H. (2005). Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39(1), 129–138. doi: 10.1016/j.watres.2004.09.011.CrossRefGoogle Scholar
  51. Wang, S., Soudi, M., Li, L., & Zhu, Z. H. (2006). Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Journal of Hazardous Materials, 133(1–3), 243–251. doi: 10.1016/j.jhazmat.2005.10.034.CrossRefGoogle Scholar
  52. Wang, S., & Zhu, Z. H. (2005). Sonochemical treatment of fly ash for dye removal from wastewater. Journal of Hazardous Materials, 126(1–3), 91–95. doi: 10.1016/j.jhazmat.2005.06.009.CrossRefGoogle Scholar
  53. Weng, C., & Pan, Y. (2006). Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 274, 154–162. doi: 10.1016/j.colsurfa.2005.08.044.CrossRefGoogle Scholar
  54. Yadav, A. K., Kaushik, C. P., Haritash, A. K., Kansal, A., & Rani, N. (2006). Defluoridation of groundwater using brick powder as an adsorbent. Journal of Hazardous Materials, 128(2–3), 289–293. doi: 10.1016/j.jhazmat.2005.08.006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Suman Mor
    • 1
    • 2
  • Manchanda K. Chhavi
    • 1
  • Kansal K. Sushil
    • 3
  • Khaiwal Ravindra
    • 4
  1. 1.Department of Environment StudiesPanjab UniversityChandigarhIndia
  2. 2.Centre for Public HealthPanjab University (PU)ChandigarhIndia
  3. 3.Dr. S.S. Bhatanagar University Institute of Chemical Engineering and TechnologyPanjab UniversityChandigarhIndia
  4. 4.School of Public HealthPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia

Personalised recommendations