Skip to main content

Environmental impact of mining liabilities in water resources of Parac micro-watershed, San Mateo Huanchor district, Peru

Abstract

Before environmental legislation was enforced, worldwide historical mines abandoned their operations without properly remediation and closure affecting the ecosystems. Because of its geological richness, Peru has attracted mining activities since colonial times and more than 8571 mining liabilities have been left. Pacococha and Millotingo mining liabilities are located on the banks of Aruri River, above Parac micro-watershed, from where communities of San Jose de Parac and San Antonio (San Mateo Huanchor district, Lima) take water for irrigating crops in low-flow periods. This paper reports for the first time in Peru the use of an interdisciplinary approach to examine the environmental effects of mining liabilities and small-scale mining on peasant communities. Physical and chemical methods, such as microscopy and spectrometry, were used to verify the presence of sulfides and to measure critical water quality parameters of Aruri and Rimac rivers. The ecosystem approach was applied to collect socioeconomic information from both communities; social actors and their statements regarding tailing problems were identified by social multi-criteria evaluation. It was found that the tailings contained sulfides that provide arsenic, cadmium, copper, zinc and manganese to Aruri and Rimac rivers in levels that exceed State of Oregon (USA) standard limits. It was also observed that both communities use this water to irrigate potato and alfalfa crops, well-known bioaccumulators. The tailings were classified as high risk to the environment by the Peruvian General Direction of Mining; however, future remediation remains uncertain due to a judicial dispute.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    This document is an action plan for the 21st century set in the Earth Summit of the United Nations Conference on Environment and Development in 1992. The action plan contains 4 sections: Social and Economic Dimensions, Conservation and Management of Resources for Development, Strengthening the Role of Major Groups, and Means of Implementation.

  2. 2.

    Ministerial Resolution N° 094-2013-MEM/DM. Entrust the state company Activos Mineros SAC execute the remediation of environmental mining liabilities of various projects in the regions of Ancash, Lima, Cajamarca, Huancavelica, Pasco, Junín and Ica. It was published by the newspaper El Peruano on 12 March 2013 (http://www.activosmineros.com.pe/images/Remediacion/Pasivos-Encargados-18032013.pdf).

  3. 3.

    Although there are five tailings Dorado deposits in Cajamarca remediated for the promulgation of the Ministerial Resolution N° 290-2007-MEM/DM due to the Tripartite Agreement between the MEM, the National Environment Fund—Peru (FONAM) and Activos Mineros in 2007.

  4. 4.

    Presidency of the Council of Ministers promulgates Supreme Decree N° 050-2008-PCM, declaring the State of Emergency in Tamboraque hill, located in the district of San Mateo de Huanchor province of Huarochiri, Department of Lima. The rule was published in the newspaper El Peruano on July 18, 2008.

References

  1. Abuya, W. O. (2016). Mining conflicts and Corporate Social Responsibility: Titanium mining in Kwale, Kenya. The Extractive Industries and Society, 3(2), 485–493. doi:10.1016/j.exis.2015.12.008.

    Article  Google Scholar 

  2. ACOMISA. (2008). Subsanación de las observaciones del Estudio de Impacto Ambiental Semidetallado del Proyecto Ecológico Charito. Lima.

  3. Amezaga, J. M., Rötting, T. S., Younger, P. L., Jo, A., Lorini, J., Pelaez, C., et al. (2008). Mining-and Water-related Legislation in Peru, Bolivia and ChileResults from the CAMINAR Project. Paper presented at the 10th International Mine Water Association Congress, Karlsbad.

  4. Amezaga, J. M., Rötting, T. S., Younger, P. L., Nairn, R. W., Noles, A.-J., Oyarzún, R., et al. (2011). A rich vein? Mining and the pursuit of sustainability. Environmental Science and Technology, 45(1), 21–26. doi:10.1021/es101430e.

    CAS  Article  Google Scholar 

  5. Andrade, A. (Ed.). (2007). Aplicación del Enfoque Ecosistémico en Latinoamérica. Bogotá: CEM-UICN.

    Google Scholar 

  6. Andrade, A., Arguedas, S., & Vides, R. (2011). Guía para la aplicación y monitoreo del Enfoque Ecosistémico: CEM-UICN, CI-Colombia, ELAP-UCI, FCBC, UNESCO-Programa MAB.

  7. Arellano-Yanguas, J. (2011). Aggravating the resource curse: Decentralisation, mining and conflict in Peru. The Journal of Development Studies, 47(4), 617–638. doi:10.1080/00220381003706478.

    Article  Google Scholar 

  8. Autoridad Nacional del Agua. (2010). In Estudio Hidrológico y Ubicación de la Red de Estaciones Hidrométricas en la Cuenca del Río Rímac (Vol. I). Lima.

  9. Autoridad Nacional del Agua. (2011). Protocolo Nacional de la Calidad de los Recursos Hídricos Superficiales de la Autoridad Nacional del Agua Resolución Judicial No. 182-2011-ANA. Lima.

  10. Autoridad Nacional del Agua. (2014). Segundo monitoreo 2013 de la calidad de agua superficial de la cuenca del río Rímac. Informe Técnico 072-2014-ANA-AAA.CF-ALA.CHRL/JLTV. Lima.

  11. Autoridad Nacional del Agua. (2015). Cooperación Coreana de Recursos Hídricos presenta informe final del Plan Maestro para la Restauración del Río Rímac.

  12. Baghour, M., Moreno, D. A., Hernández, J., Castilla, N., & Romero, L. (2001). Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum tuberosum L. Var. Spunta). Journal of Environmental Science and Health, Part A, 36(7), 1389–1401. doi:10.1081/ESE-100104886.

    CAS  Article  Google Scholar 

  13. Balvín Díaz, D., & Amezaga, J. M. (2006). Estado de la Situación sobre la Gestión del agua e la Minería: El caso Peruano. Environmental Regulation of Mine Waters in South America.

  14. Banco Mundial. (2005). Riqueza y Sostenibilidad: Dimensiones Sociales y Ambientales de la Minería en el Perú Lima: Banco Mundial.

  15. Barrantes, R. (2005). Minería, desarrollo y pobreza en el Perú, o de cómo todo depende con el cristal con el que se mire. In R. Barrantes, P. Zárate, & A. Durand (Eds.), Te quiero pero no: Relaciones entre minería, desarrollo y poblaciones locales (pp. 17–79). Lima: IEP, OXFAM.

    Google Scholar 

  16. Bebbington, A., Connarty, M., Coxshall, W., O’Shaughnessy, H., & Williams, M. (2007). Minería y desarrollo en el Perú: con especial referencia al Proyecto Río Blanco, Piura. Lima: Oxfam International; IEP; CIPCA; PSG.

    Google Scholar 

  17. Bebbington, A., Hinojosa, L., Bebbington, D. H., Burneo, M. L., & Warnaars, X. (2008). Contention and ambiguity: Mining and the possibilities of development. Development and Change, 39(6), 887–914. doi:10.1111/j.1467-7660.2008.00517.x.

    Article  Google Scholar 

  18. Bebbington, A., & Williams, M. (2008). Water and mining conflicts in Peru. Mountain Research and Development, 28(3/4), 190–195. doi:10.1659/mrd.1039.

    Article  Google Scholar 

  19. Bridge, G. (2004). Mapping the bonanza: Geographies of mining investment in an era of neoliberal reform. The Professional Geographer, 56(3), 406–421. doi:10.1111/j.0033-0124.2004.05603009.x.

    Google Scholar 

  20. Bury, J. T. (2002). Livelihoods, mining and peasant protests in the Peruvian Andes. Journal of Latin American Geography, 1(1), 1–19.

    Article  Google Scholar 

  21. Buytaert, W., & De Bièvre, B. (2012). Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resources Research. doi:10.1029/2011WR011755.

    Google Scholar 

  22. Calla, H. (2010). Calidad del agua en la cuenca del río Rímac-Sector de San Mateo, afectado por las actividades mineras. Lima: Universidad Nacional de San Marcos.

    Google Scholar 

  23. Chacon, R. E. (2003). El nacimiento del ecologismo popular en el Perú; o la lucha sin fin de las comunidades de Vicco y San Mateo. Ecología Política, 24, 113–127.

    Google Scholar 

  24. CODEMADES (2012). Informe Preliminar de la Inspección Ocular y Monitoreo de Agua en la Microcuenca Párac. Lima.

  25. Coelho, P. C. S., & Teixeira, J. P. F. (2011). Mining activities: Health impacts. In J. O. Nriagu (Ed.), Encyclopedia of environmental health (pp. 788–802). Burlington: Elsevier.

    Chapter  Google Scholar 

  26. Comisión Interamericana de Derechos Humanos. (2004). Informe No. 69/04. Petición 504/03 Admisibilidad Comunidad de San Mateo de Huanchor y sus Miembros Perú. https://www.cidh.oas.org/annualrep/2004sp/Peru.504.03.htm.

  27. Comisión Técnica Multisectorial. (2009). Política y Estrategia Nacional de Recursos Hídricos del Perú. In A. N. D. Agua (Ed.) (p. 79). Lima.

  28. Congreso de la República del Perú. (2004). Ley que Regula los Pasivos Ambientales de la Actividad Minera. In C. D. L. R. D. Perú (Ed.), Ley 28271. Lima: El Peruano.

  29. Convention on Biological Diversity. (2000). Fifth ordinary meeting of the conference of the parties to the convention on biological diversity, 15–26 May 2000—Nairobi, Kenya. http://www.cbd.int/decisions/cop/?m=cop-05.

  30. Coxshall, W. (2010). “When they came to take our resources”: Mining conflicts in Peru and their complexity. Social Analysis, 54(1), 35–51. doi:10.3167/sa.2010.540103.

    Article  Google Scholar 

  31. De Echave, J. (2008). Diez años de minería en el Perú. Lima: CooperAcción.

    Google Scholar 

  32. De la Puente Brunke, L. (2010). Derecho Ambiental e Industria Minera en el Perú. Lima: Instituto de Estudios Energéticos Mineros.

    Google Scholar 

  33. Defensoría del Pueblo. (2016). Reporte de Conflictos Sociales No. 150. Lima.

  34. Dirección de Promoción y Minería. (2015). Anuario Minero 2015, Ministerio de Energía y Minas (Ministerio de Energía y Minas, Dirección de Promoción y Minería ed.). Lima.

  35. Drexhage, J., & Murphy, D. (2010). Sustainable Development: From Brundtland to Rio 2012: Background paper prepared for consideration by the high level panel on global sustainability at its first meeting. New York: United Nations Headquarters.

    Google Scholar 

  36. Dupuy, R., Roman, P., & Mougenot, B. (2015). Analyzing socio-environmental conflicts with a commonsian transactional framework: Application to a mining conflict in Peru. Journal of Economic Issues, 49(4), 895–921. doi:10.1080/00213624.2015.1106200.

    Article  Google Scholar 

  37. Food and Agriculture Organization. (2002). Forestry. http://www.fao.org/forestry/13029-0c7da1b003c228e3de319d89da3264977.pdf.

  38. Food and Agriculture Organization. (2003). Water reports No. 23. Review of World Water Resources by Country Rome.

  39. Funtowicz, S. O., & Ravetz, J. R. (1994). Uncertainty, complexity and post-normal science. Environmental Toxicology and Chemistry, 13(12), 1881–1885. doi:10.1002/etc.5620131203.

    CAS  Article  Google Scholar 

  40. Gamboa Jiménez, G. (2009). Social multi-criteria evaluation in practice: Two real-world case studies. Barcelona: Universitat Autònoma de Barcelona.

    Google Scholar 

  41. Gardea-Torresdey, J. L., Gonzalez, J. H., Tiemann, K. J., Rodriguez, O., & Gamez, G. (1998). Phytofiltration of hazardous cadmium, chromium, lead and zinc ions by biomass of Medicago sativa (Alfalfa). Journal of Hazardous Materials, 57(1), 29–39. doi:10.1016/S0304-3894(97)00072-1.

    CAS  Article  Google Scholar 

  42. Garibay, C. (2010). Paisajes de acumulación minera por desposesión campesina en el México actual. In G. C. Delgado Ramos (Ed.), Ecología política de la minería en América Latina: Aspectos socioeconómicos, legales y ambientales de la mega minería (pp. 133–182). México City: UNAM, Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades.

    Google Scholar 

  43. Garmendia, E., Gamboa, G., Franco, J., Garmendia, J. M., Liria, P., & Olazabal, M. (2010). Social multi-criteria evaluation as a decision support tool for integrated coastal zone management. Ocean and Coastal Management, 53(7), 385–403. doi:10.1016/j.ocecoaman.2010.05.001.

    Article  Google Scholar 

  44. Giampietro, M., Mayumi, K., & Ramos-Martin, J. (2009). Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy, 34(3), 313–322. doi:10.1016/j.energy.2008.07.020.

    Article  Google Scholar 

  45. Gil Ramón, V. R. (2009). Aterrizaje minero: cultura, conflicto, negociaciones y lecciones para el desarrollo desde la minería en Ancash. Perú: Instituto de Estudios Peruanos.

    Google Scholar 

  46. Gonzales, E., & Aguirre, C. (2002). San Mateo de Huanchor. Plan de gestión ambiental para el desarrollo sustentable. Lima: Programa APGEP-SENREM. Convenio USAID-CONAM.

    Google Scholar 

  47. Guo, L., Ott, D. W., & Cutright, T. J. (2014). Accumulation and histological location of heavy metals in Phragmites australis grown in acid mine drainage contaminated soil with or without citric acid. Environmental and Experimental Botany, 105, 46–54. doi:10.1016/j.envexpbot.2014.04.010.

    CAS  Article  Google Scholar 

  48. Helwege, A. (2015). Challenges with resolving mining conflicts in Latin America. The Extractive Industries and Society, 2(1), 73–84. doi:10.1016/j.exis.2014.10.003.

    Article  Google Scholar 

  49. Hilson, G., & Yakovleva, N. (2007). Strained relations: A critical analysis of the mining conflict in Prestea, Ghana. Political Geography, 26(1), 98–119. doi:10.1016/j.polgeo.2006.09.001.

    Article  Google Scholar 

  50. Instituto Colombiano de Normas Técnicas. (2014). Normas Oficiales para la Calidad del Agua Colombia. Norma Técnica Colombiana 813. (Vol. NTC 813). Bogotá.

  51. International Union for Conservation of Nature. (2004). Ecosystem Management Series No. 3.

  52. International Union For Conservation of Nature. (2008). The ecosystem approach: Learning from experience. Switzerland: UICN.

    Google Scholar 

  53. Jaskoski, M. (2014). Environmental licensing and conflict in Peru’s mining sector: A path-dependent analysis. World Development, 64, 873–883. doi:10.1016/j.worlddev.2014.07.010.

    Article  Google Scholar 

  54. Liverman, D. M., & Vilas, S. (2006). Neoliberalism and the Environment in Latin America. Annual Review of Environment and Resources, 31(1), 327–363. doi:10.1146/annurev.energy.29.102403.140729.

    Article  Google Scholar 

  55. Martinez Alier, J. (2010). El ecologismo de los pobres. Conflictos ambientales y lenguajes de valoración (Cuarta ed.). Lima: Espiritrompa.

    Google Scholar 

  56. Ministerio de Energía y Minas. (1997). Evaluación Ambiental Territorial de la Cuenca del río Rímac. Lima: MINEM.

    Google Scholar 

  57. Ministerio de Energía y Minas. (2015). Inventario de Pasivos Ambientales Mineros. Actualizan el Inventario Inicial de Pasivos Ambientales Mineros. Aprobado por R.M. 102-2015-EM/DM. Lima: MINEM.

  58. Ministerio de Energía y Minas. (2016). Directorio Minero Actualizado al 30 de Junio de 2016. In Minería (Ed.). Lima.

  59. Ministerio del Ambiente (2008). Aprueban los Estándares Nacionales de Calidad Ambiental para Agua. Decreto Supremo No. 002-2008-MINAM. Lima: El Peruano.

  60. Ministerio del Ambiente. (2016). Historia Ambiental del Perú. Siglos XVIII y XIX. MINAM: Lima.

    Google Scholar 

  61. Mollinga, P. P. (2009). Towards the transdisciplinary engineer: Incorporating ecology, equity and democracy concerns into water professionals’ attitudes, skills and knowledge. Irrigation and Drainage, 58(S2), S195–S204. doi:10.1002/ird.510.

    Article  Google Scholar 

  62. Mostert, E. (2006). Participation for sustainable water management. In C. Giupponi, A. Jakeman, D. Karssenberg, & M. Hare (Eds.), Sustainable management of water resources: An integrated approach. Series on Economics, the environment and sustainable development (pp. 153–176). Northampton: The Fondazione Eni Enrico Mattei (FEEM).

    Google Scholar 

  63. Munda, G. (2004). Social multi-criteria evaluation: Methodological foundations and operational consequences. European Journal of Operational Research, 158(3), 662–677. doi:10.1016/S0377-2217(03)00369-2.

    Article  Google Scholar 

  64. Neumayer, E. (2010). Weak versus strong sustainability: Exploring the limits of two opposing paradigms (3rd ed.). Cheltenham y Northampton: Edward Elgar Publishing Limited.

    Book  Google Scholar 

  65. Oregon Department of Environmental Quality. (2014). Division 41. Water Quality Standards: Beneficial Uses, Policies, and Criteria for Oregon 340-041-0033 Toxic Substances.

  66. Orellana, M. (2006). Caso 12471 Comunidad de San Mateo de Huanchor - Presentación Sobre el Fondo. Washington, DC: Comisión de Interamericana de Derechos Humanos.

    Google Scholar 

  67. Organismo de Evaluación y Fiscalización Ambiental. (2012). Mapa de Situación Minera y Pasivos Ambientales Mineros en el Ámbito de la Cuenca del Río Rímac. SIG OEFA.

  68. Organismo de Evaluación y Fiscalización Ambiental. (2013). Fiscalización Ambiental a la Pequeña Minería y Minería Artesanal. Informe 2013. Índice de Cumplimiento de los Gobiernos Regionales Lima: OEFA.

  69. Peralta-Videa, J. R., Gardea-Torresdey, J. L., Gomez, E., Tiemann, K. J., Parsons, J. G., & Carrillo, G. (2002). Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 119(3), 291–301.

    CAS  Article  Google Scholar 

  70. Phillips, J. (2016). Climate change and surface mining: A review of environment-human interactions & their spatial dynamics. Applied Geography, 74, 95–108. doi:10.1016/j.apgeog.2016.07.001.

    Article  Google Scholar 

  71. Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., et al. (2013). Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81–102. doi:10.5194/tc-7-81-2013.

    Article  Google Scholar 

  72. Rajkumar, M., Prasad, M. N., Swaminathan, S., & Freitas, H. (2013). Climate change driven plant-metal-microbe interactions. Environment International, 53, 74–86. doi:10.1016/j.envint.2012.12.009.

    CAS  Article  Google Scholar 

  73. Ramirez Bautista, B. (2005). El enclave minero y el desmejoramiento de los niveles de vida de los pueblos de la cuenca alta del rió Rimac. Investigaciones Sociales, 14, 179–211.

    Google Scholar 

  74. Ramos, W., Galarza, C., De Amat, F., Pichardo, L., Ronceros, G., Juárez, D., et al. (2006). Queratosis arsenical en pobladores expuestos a relaves mineros en altura en San Mareo de Huanchor: ¿Sinergismo entre arsenicismo y daño actínico crónico? Dermato Perú, 16(1), 41–45.

    Google Scholar 

  75. Salomons, W. (1995). Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration, 52(1–2), 5–23. doi:10.1016/0375-6742(94)00039-E.

    CAS  Article  Google Scholar 

  76. Simate, G. S., & Ndlovu, S. (2014). Acid mine drainage: Challenges and opportunities. Journal of Environmental Chemical Engineering, 2(3), 1785–1803. doi:10.1016/j.jece.2014.07.021.

    CAS  Article  Google Scholar 

  77. Sistema de Difusión de los Censos Nacionales. (2007). Instituto Nacional de Estadística e Informática. http://ineidw.inei.gob.pe/ineidw/#.

  78. Tetreault, D. (2015). Social environmental mining conflicts in Mexico. Latin American Perspectives, 42(5), 48–66. doi:10.1177/0022429415585112.

    Article  Google Scholar 

  79. The Oregonian. (2011). Oregon adopts strictest standards in United States for toxic water pollution. http://www.oregonlive.com/environment/index.ssf/2011/06/oregon_adopts_strictest_standa.html.

  80. The Ramsar Convention on Wetlands. (2002). Wetlands: Water, Life, and Culture. 8th Meeting of the Conference of the Parties. http://ramsar.rgis.ch/cda/en/ramsar-documents-resol-resolutions-of-8th/main/ramsar/1-31-107%5E21367_4000_0.

  81. Tumialán, P. (2004). La Geología en Relación al Sistema Ecológico en el Perú. Revista del Instituto de Investigación FIGMMG, 7(13), 9–15.

    Google Scholar 

  82. United Nations (1987). Report of the World Commission of Environment and Development: Our Common Future.

  83. United Nations (1992). Programa 21: Capítulo 10. Enfoque Integrado de la Planificación y la Ordenación de los Recursos de Tierras http://www.un.org/spanish/esa/sustdev/agenda21/agenda21spchapter10.htm.

  84. U.S. Environmental Protection Agency Office of Science and Technology (2001). Trace elements in water, solids and biosolids by inductively coupled plasma—atomic emission spectrometry (Vol. Method 200.7). Washington, D.C.: Environmental Protection Agency.

  85. Vuille, M. (2013). Climate change and water resources in the tropical Andes. Technical Note No. IDB-TN-515. Environmental Safeguards Unit: Inter-American Development Bank.

  86. Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30(5), 685–700. doi:10.1016/j.envint.2003.11.002.

    CAS  Article  Google Scholar 

  87. Wright, D. A., & Welbourn, P. (2002). Environmental toxicology (Vol. 11). Cambridge University Press.

Download references

Acknowledgements

This research was supported by a PUCP grant Programa de Apoyo a la Investigación para Estudiantes de Posgrado PAIP-2014.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amelia Corzo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corzo, A., Gamboa, N. Environmental impact of mining liabilities in water resources of Parac micro-watershed, San Mateo Huanchor district, Peru. Environ Dev Sustain 20, 939–961 (2018). https://doi.org/10.1007/s10668-016-9899-z

Download citation

Keywords

  • Mining liabilities
  • Parac
  • Social multi-criteria evaluation
  • Ecosystem approach