Environment, Development and Sustainability

, Volume 18, Issue 2, pp 577–591 | Cite as

Regional carbon footprints of households: a German case study

  • Robert Miehe
  • Rene Scheumann
  • Christopher M. Jones
  • Daniel M. Kammen
  • Matthias Finkbeiner
Case Study


Households are either directly or indirectly responsible for the highest share of global anthropogenic greenhouse gas emissions. Hence, programs helping to improve human consumption habits have been identified as a comparatively cost-effective way to reduce household emissions significantly. Recently, various studies have determined strong regional differences in household carbon footprints, yet a case study for Germany has not been conducted. Local information and policies directed at household consumption in Germany thus devoid of any foundation. In this paper, we analyze the impact of different criteria such as location, income and size on household carbon footprints in Germany and demonstrate how the impact of GHG mitigation opportunities varies for different population segments. We use a multi-region input output hybrid LCA approach to developing a regionalized household carbon footprint calculator for Germany that considers 16 sub-national regions, 15 different household sizes, and eight different income and age categories. The model reveals substantial regional differences in magnitude and composition of household carbon footprints, essentially influenced by two criteria: income and size. The highest income household is found to emit 4.25 times as much CO2e than the lowest. We identify indirect emissions from consumption as the largest share of household carbon footprints, although this is subject to fluctuation based on household type. Due primarily to local differences in vehicle availability, income and nutrition, an average household in Baden-Wuerttemberg is found to have 25 % higher carbon footprint than its Mecklenburg-West Pomeranian counterpart. Based on the results of this study, we discuss policy options for household carbon mitigation in Germany.


Carbon footprint Household consumption De-carbonization Mitigation policies 


  1. Aamaas, B., Borken-Kleefeld, J., & Peters, G. P. (2013). The climate impact of travel behavior: A German case study with illustrative mitigation options. Environmental Science & Policy, 33, 273–82.
  2. Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25(3), 273–291.
  3. Ahmad, N., & Wyckoff, A. (2003). Carbon dioxide emissions embodied in international trade of goods.
  4. Andreasen, A. R. (1994). Social marketing—Its definition and domain. Journal of Public Policy & Marketing, 13(1), 108–114.Google Scholar
  5. Argonne National Laboratory. (2012a). The greenhouse gases, regulated emissions, and energy use in transportation (GREET 2.8a).
  6. Argonne National Laboratory. (2012b). The greenhouse gases, regulated emissions, and energy use in transportation model (GREET 1.8c).
  7. Arbeitsgemeinschaft Energiebilanzen. (2012). Bruttostromerzeugung in Deutschland von 1990 bis 2011 nach Energieträgern. Berlin.
  8. Barrett, J., Peters, G., Wiedmann, T., Scott, K., Lenzen, M., Roelich, K., et al. (2013) Consumption-based GHG emission accounting: A UK case study. Climate Policy, 13(4), 451–470.
  9. Berkhout, P. H. G., Muskens, J. C., & Velthuijsen, J. W. (2000). Defining the rebound effect. Energy Policy, 28, 425–432.CrossRefGoogle Scholar
  10. Birol, F., & Keppler, J. H. (2000). Prices, technology development and the rebound effect. Energy Policy, 28, 457–469.CrossRefGoogle Scholar
  11. Brinkman, N., Wang, M., Weber, T., & Darlington, T. (2005). Well-to-wheels analysis of advanced fuel/vehicle systems—A North American study of energy use, greenhouse gas emissions, and criteria pollutant emissions.Google Scholar
  12. Bullard, C. W., & Herendeen R. A. (1975) Energy impact of consumption decisions. Proceedings of IEEE, 63(3), 484–493.
  13. Bureau of Transportation Statistics. (2012).
  14. Bundesministerium fuer Wirtschaft und Technologie. (2010). Energie in Deutschland—Trends und Hintergründe zur Energieversorgung. Berlin.Google Scholar
  15. Chester, M., & Horvath, A. (2011). Vehicle manufacturing futures in transportation life-cycle assessment. Research Reports, Institute of Transportation Studies. Berkeley: UC Berkeley.
  16. Deutsches Institut für Wirtschaftsforschung. (2011). Kraftfahrzeugverkehr 2010—Weiteres Wachstum und hohe Bedeutung von Firmenwagen. Berlin.
  17. Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C., & Vandenbergh, M. P. (2009) Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proceedings of the National Academy of Sciences USA, 106(44), 18452–18456.
  18. Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M. P., & de Vries, G. J. (2013). The construction of world input–output tables in the WIOD project. Economic Systems Research, 25, 71–98.CrossRefGoogle Scholar
  19. DIN-EN-ISO. 14067: Carbon Footprint von Produkten—Entwurf. (2012).Google Scholar
  20. Ellerman, A. D., & Buchner, B. K. (2007). The European Union emissions trading scheme: Origins, allocation, and early results. Review of Environmental Economic Policy, 1(1), 66–87.CrossRefGoogle Scholar
  21. EUREAPA. (2004). Regional comparison (2004—Baseline) from carbon footprint (all GHGs).Google Scholar
  22. Fawcett, T. (2004). Carbon rationing and personal energy use. Energy & Environment, 15(6), 1067–1083.CrossRefGoogle Scholar
  23. Finkbeiner, M. (2009). Carbon footprinting—Opportunities and threats. The International Journal of Life Cycle Assessment, 14(2), 91–94.
  24. Finkbeiner, M., Hoffmann, R., Ruhland, K., Liebhart, D., & Stark, B. (2006). Application of life cycle assessment for the environmental certificate of the Mercedes-Benz S-Class. The International Journal of Life Cycle Assessment, 11(4), 240–246.CrossRefGoogle Scholar
  25. Group, R., & Europe, C. (2008) Statistical yearbook.Google Scholar
  26. Greening, L. A., Greene, D. L., & Difiglio, C. (2000). Energy efficiency and consumption—The rebound effect—A survey. Energy Policy, 28, 389–401.CrossRefGoogle Scholar
  27. Heinonen, J., & Junnila, S. (2011). Implications of urban structure on carbon consumption in metropolitan areas. Environmental Research Letters, 6(1), 014018.
  28. Hertwich, E. G., & Peters, G. P. Carbon footprint of nations: A global, trade-linked analysis. Environmental Science & Technology, 43(16), 6414–6420.
  29. Hertwich, E. G. (2005). Consumption and the rebound effect—An industrial ecology perspective. Journal of Industrial Ecology, 9, 85–98.CrossRefGoogle Scholar
  30. Hertwich, E. G., & Peters, G. P. (2009) Carbon footprint of nations: A global, trade-linked analysis. Environmental Science & Technology, 43(16), 6414–6420.
  31. Hertwich, E. G., & Peters, G. P. (2010). Multiregional input–output database OPEN: EU technical document OPEN: EU multiregional input–output database.Google Scholar
  32. International Energy Agency. (2012). Statistics and balances. Paris: International Energy Agency.
  33. Jones, C., & Kammen, D. M. Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environmental Science & Technology.Google Scholar
  34. Jones, C. M., & Kammen, D. M. (2011) Quantifying carbon footprint reduction opportunities for U.S. households and communities. Environmental Science & Technology, 45(9), 4088–4095.
  35. Kunkel, C. M., & Kammen, D. M. (2011). Design and implementation of carbon cap and dividend policies. Energy Policy, 39(1), 477–486.
  36. Kollmuss, A., & Crimmins, A. M. (2009). Carbon offsetting & Air Travel Part 2: Non-CO2 emissions calculations (SEI Discussion Paper). Stockholm (pp. 1–43).Google Scholar
  37. Kraftfahrtbundesamt. (2011). Bestand an Personenkraftwagen am 1. Januar 2012 nach Bundesländern und ausgewählten Kraftstoffarten.
  38. Laitner, J. A. S., Ehrhardt-martinez, K., & Mckinney, V. (2009) Examining the scale of the behaviour energy efficiency continuum. 217–223.Google Scholar
  39. Lenzen, M., Dey, C., & Foran, B. (2004). Energy requirements of Sydney households. Ecological Economics, 49(3), 375–399.
  40. Lenzen, M., Wood, R., & Wiedmann, T. (2010). Uncertainty analysis for multi-region input–output models—A case study of the UK’S carbon footprint. Economic Systems Research, 22(1), 43–63.CrossRefGoogle Scholar
  41. Lenzen, M., Kanemoto, K., Moran, D., & Geschke, A. (2012). Mapping the structure of the world economy. Environmental Science and Technology, 46(15), 8374–8381.CrossRefGoogle Scholar
  42. Lenzen, M., Moran, D., Kanemoto, K., & Geschke, A. (2013). Building Eora: A global multi-regional input–output database at high country and sector resolution. Economic Systems Research, 25, 20–49.CrossRefGoogle Scholar
  43. Max Rubner Institut. (2008a). Nationale Verkehrstudie II—Ergebnisbericht (Teil 1). Karlsruhe.Google Scholar
  44. Max Rubner Institut. (2008b). Nationale Verkehrstudie II—Ergebnisbericht (Teil 2). Karlsruhe.Google Scholar
  45. McKenzie-Mohr, D. (2011). Fostering sustainable behavior: An introduction to community-based social marketing. Cabriola Island: New Society Publishers.Google Scholar
  46. Minx, J. C., Wiedmann, T., Wood, R., Peters, G. P., Lenzen, M., Owen, A., et al. (2009). Input–output analysis and carbon footprinting: An overview of applications. Economic Systems Research, 21(3), 187–216.CrossRefGoogle Scholar
  47. Minx, J., Baiocchi, G., Wiedmann, T., Barrett, J., Creutzig, F., Feng, K., et al. (2013). Carbon footprints of cities and other human settlements in the UK. Environmental Research Letters, 8(3), 035039.
  48. Narayanan, B. G., & Walmsley, T. L. (2008). Global trade, assistance, and production—The GTAP 7 data base. USA: Center for Global Trade Analysis, Purdue University.Google Scholar
  49. Pont, J. (2007). Full fuel cycle assessment—well-to-wheels energy inputs, emissions and water impacts. State plan to increase the use of non-petroleum transportation fuels, assembly bill 1007Alternative transportation fuels plan proceeding. TIAX LLC Consultant Report. Cupertino.Google Scholar
  50. Sausen, R., Isaksen, I., Grewe, V., Hauglustaine. D., Lee, D. S., Myhre, G., et al. (2005). Aviation radiative forcing in 2000: An update on IPCC (1999). Meteorologische Zeitschrift, 14(4), 555–561.
  51. Seyfang, G., Lorenzoni, I., & Nye, M. (2007). Personal Carbon Trading: Notional concept or workable proposition? Exploring theoretical, ideological and practical underpinnings. Norwich, UKGoogle Scholar
  52. Skjærseth, J. B., & Wettestad, J. (2009). The origin, evolution and consequences of the EU emissions trading system. Global Environmental Politics, 9(2), 101–122.CrossRefGoogle Scholar
  53. Sorrell, S., & Dimitropoulos, J. (2008). The rebound effect—Microeconomic definitions, limitations and extensions. Ecological Economics, 65, 636–649.CrossRefGoogle Scholar
  54. Statistisches Bundesamt. (2008a). Wirtschaftsrechnungen—Einkommens- und Verbraucherstichprobe 2008—Aufwendungen privater Haushalte für den Privaten Konsum (Fachserie 15 Heft 5). Wiesbaden.Google Scholar
  55. Statistisches Bundesamt. (2008b). Wirtschaftsrechnungen—Einkommens- und Verbraucherstichprobe 2008—Aufwendungen privater Haushalte für Nahrungsmittel, Getränke und Tabakwaren (Fachserie 15 Heft 3). Wiesbaden.Google Scholar
  56. Statistisches Bundesamt. (2008c). Wirtschaftsrechnungen—Einkommens- und Verbraucherstichprobe 2008—Ausstattung privater Haushalte mit ausgewählten Gebrauchsgütern (Fachserie 15 Heft 1). Wiesbaden.Google Scholar
  57. Statistisches Bundesamt. (2008d). Wirtschaftsrechnungen—Einkommens- und Verbraucherstichprobe 2008—Einnahmen und Ausgaben privater Haushalte (Fachserie 15 Heft 4). Wiesbaden.Google Scholar
  58. Statistisches Bundesamt. (2012). Preise—Harmonisierte Verbraucherpreisindizes, Deutschland. Wiesbaden: Statistisches BundesamtGoogle Scholar
  59. Statistisches Bundesamt. (2013). Einkommens- und Verbrauchsstichprobe (EVS).
  60. Statistische Aemter des Bundes und der Laender. (2012). Gebiet und Bevölkerung—Fläche und Bevölkerung.
  61. Sullivan, J. L., & Burnham, A., & Wang, M. (2010). Energy-consumption and carbon-emission analysis of vehicle and component manufacturing. Argonne.Google Scholar
  62. Steg, L., & Vlek, C. (2009) Encouraging pro-environmental behaviour: An integrative review and research agenda. Journal of Environmental Psychology, 29(3), 309–317.
  63. The Carbon Trust. (2007). Carbon footprint measurement methodologyVersion 1.1. London.
  64. Umweltbundesamt. (2012a). Der CO2-Rechner., Deutschland.
  65. Umweltbundesamt. (2012b). Prozessorientierte Basisdaten für Umweltmanagement-Instrumente—PROBAS Datenbank. Umweltbundesamt.
  66. Umweltbundesamt. (2008). Bestimmung spezifischer Treibhausgas-Emissionsfaktoren für Fernwärme (Forschungsbericht 360 16 008; UBA-FB 001145). Dessau-Roßlau.
  67. What are equivalence scales? (2008). Paris.
  68. Wiedmann, T., Minx, J. (2007). A definition of “Carbon Footprint”. ISA Research and Consulting, editor (pp. 1–11). Durham: Nova Science Publishers.Google Scholar
  69. Wiedmann, T., Lenzen, M., & Wood, R. (2008). Uncertainty analysis of the UK-MRIO model—results from a Monte-Carlo analysis of the UK multi-region input–output model (Embedded Emissions Indicator). London.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Robert Miehe
    • 1
  • Rene Scheumann
    • 2
  • Christopher M. Jones
    • 3
  • Daniel M. Kammen
    • 3
  • Matthias Finkbeiner
    • 2
  1. 1.Sustainable Production and Quality ManagementFraunhofer Institute for Manufacturing Engineering and Automation (IPA)StuttgartGermany
  2. 2.Department of Environmental Technology, Chair of Sustainable EngineeringTechnical University BerlinBerlinGermany
  3. 3.Energy and Resources Group and Renewable and Appropriate Energy LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations