Skip to main content

Advertisement

Log in

Service life of concrete structures considering the effects of temperature and relative humidity on chloride transport

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Chloride is one of the main factors responsible for damages related to the corrosion of the concrete reinforcement in marine environments. It is known that this mechanism of degradation is directly related to environmental variables. Within this context, it can be inserted the global climate change. This paper deals with the effects of temperature and relative humidity changes on the service life of concrete structures affected by chloride attack. This way, three situations of environmental aggressiveness were simulated: past, current, and future. Then, models for predicting the chlorides penetration were analyzed to the three selected situations. So, a practical methodology is presented, and the results are consistent with the literature data. Among the results, it can be noted that changes in temperature and relative humidity identified in a period of 100 years were responsible for a reduction from 7.8 to 10.2 years of service life. Most standards provide a design service life of 50 years for reinforced concrete structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

B h :

Surface mass transfer coefficient

C :

Fixing ability of chlorides

d :

Parameter which depends on the ratio between the surface and the critical concentration of chlorides in the structure

D c :

Chloride diffusion coefficient

D c1 :

Reference chloride diffusion coefficient

D c2 :

Corrected chloride diffusion coefficient

E a :

Activation energy of diffusion

e s(T po):

Saturation vapor pressure, determined from the dew point temperature

e s(T m ):

Saturation vapor pressure, calculated from the hourly average temperature

f 1(T):

Factor that represents the influence of temperature

f 2(T e):

Factor that represents the influence of the “equivalent maturation time”

f 3(RH):

Factor that represents the influence of relative humidity

f c :

Compressive strength of the concrete

J h :

Humidity flux

k 1 :

Constants that represent the influence of temperature

k 2 :

Constants that represent the influence of relative humidity

q :

Experimental constant

R :

Universal gas constant

RH:

Relative humidity

RHc :

Humidity at which D c2 drops halfway between its maximum and minimum values

RHXc :

Relative humidity in concrete surface

T :

Air temperature

T 1 :

Reference temperature

T 2 :

Desired temperature

T a :

Annual average temperatures

t e :

Actual time of exposure to chloride

t ic :

Time to initiation of corrosion

T n :

Minimum temperature

T Xc :

Temperature of concrete cover

x :

Chloride penetration depth

x c :

Concrete cover

ζ:

Coefficient that measures the diffusivity decreases with time

References

  • Adger, N. W., Amell, N. W., & Tompkins, E. L. (2005). Successful adaptation to climate change across scales. Global Environmental Change, 15(2), 77–86. doi:10.1016/j.gloenvcha.2004.12.005.

    Article  Google Scholar 

  • Amey, S. L., Johnson, D. A., & Miltenberger, M. A. (1998). Predicting the service life of concrete marine structures: An environmental methodology. ACI Structural Journal, 95(2), 205–214. doi:10.14359/540.

    Google Scholar 

  • Andrade, C., & Castillo, A. (2003). Evolution of reinforcement corrosion due to climatic variations. Materials and Corrosion, 54(6), 379–386. doi:10.1002/maco.200390087.

    Article  CAS  Google Scholar 

  • Andrishak, R., & Hicks, F. (2008). Simulating the effects of climate change on the ice regime of the Peace River. Canadian Journal of Civil Engineering, 35(5), 461–472. doi:10.1139/L07-129.

    Article  Google Scholar 

  • Bastidas-Arteaga, E., Chateauneuf, A., Sánchez-Silva, M., Bressolette, Ph, & Schoefs, F. (2010). Influence of weather and global warming in chloride ingress into concrete: A stochastic approach. Structural Safety, 32(4), 238–249. doi:10.1016/j.strusafe.2010.03.002.

    Article  Google Scholar 

  • Bazant, Z. P., & Najjar, L. J. (1971). Drying of concrete as a nonlinear diffusion problem. Cement and Concrete Research, 1(5), 461–473. doi:10.1016/0008-8846(71)90054-8.

    Article  Google Scholar 

  • Bazant, Z. P., & Thonguthai, W. (1978). Pore pressure and drying of concrete at high temperatures. Journal of the Engineering Mechanics Division, 104(5), 1059–1079.

    Google Scholar 

  • Beltaos, S., & Burrell, B. C. (2003). Climatic change and river ice breakup. Canadian Journal of Civil Engineering, 30(1), 145–155. doi:10.1139/l02-042.

    Article  Google Scholar 

  • Bob, C. (1996). Probabilistic assessment of reinforcement corrosion in existing structures. In R. Dhir & R. Jones (Eds.), Concrete in the service of mankind: concrete repair, rehabilitation and protection, (1st ed., Vol. 5, pp. 17–28). London: CRC Press.

  • Caré, S., & Hervé, E. (2000). Prediction of the chloride diffusion coefficient in concrete using the homogenization technique. In Proceedings of second international RILEM workshop on testing and modelling the chloride ingress into concrete, RILEM Publications SARL, pp. 235–246.

  • Castellví, F., Perez, P. J., Villar, J. M., & Rosell, J. L. (1996). Analysis of methods for estimating vapor pressure deficits and relative humidity. Agricultural and Forest Meteorology, 82(1–4), 29–45. doi:10.1016/0168-1923(96)02343-X.

    Article  Google Scholar 

  • Castro-Borges, P., & Mendoza-Rangel, J. M. (2010). Influence of climate change on concrete durability in Yucatan peninsula. Corrosion Engineering, Science and Technology, 45(1), 61–69. doi:10.1179/147842209X12489567719662.

    Article  CAS  Google Scholar 

  • Collepardi, M., Marcialis, A., & Turriziani, R. (1972). Penetration of chloride ions in cement pastes and in concretes. Journal of the American Ceramic Society, 55(10), 534–535. doi:10.1111/j.1151-2916.1972.tb13424.x.

    Article  CAS  Google Scholar 

  • Delgado, R. C., Sediyama, G. C., Zolnier, S., & Costa, M. H. (2009). Physico-mathematical models to estimate air relative humidity from air temperature data (in Portuguese). Ceres, 56(3), 256–265.

    Google Scholar 

  • Duracrete. (1999). Models for environmental actions on concrete structures. Probabilistic performance based durability design of concrete structure. In A. Lindvall & L. O. Nilsson (Eds.), The European Union—Brite EuRam III, 1st edn. Europe.

  • Dyer, J. A., & Brown, D. M. (1977). A climatic simulator for field-drying hay. Agricultural Meteorology, 18(1), 37–48. doi:10.1016/0002-1571(77)90026-7.

    Article  Google Scholar 

  • Engelund, S., & Sϕrensen, J. D. (1998). A probabilistic model for chloride-ingress and initiation of corrosion in reinforced concrete structures. Structural Safety, 20(1), 69–89. doi:10.1016/S0167-4730(97)00022-2.

    Article  Google Scholar 

  • Frederiksen, J. M., & Geiker, M. (2000). On an empirical model for estimation of chloride ingress into concrete. In Proceeding of the second international RILEM workshop on testing and modelling the chloride ingress into concrete, RILEM Publications SARL, pp. 355–371.

  • Goto, S., & Roy, D. M. (1981). Diffusion of ions through hardened cement pastes. Cement and Concrete Research, 11(5–6), 751–757. doi:10.1016/0008-8846(81)90033-8.

    Article  CAS  Google Scholar 

  • Hechler, J., Boulanger, J., Noël, D., & Pinon, C. (1993). Corrosion rates, wetness, and pollutants on exterior of building. Journal of Materials in Civil Engineering, 5(1), 53–61. doi:10.1061/(ASCE)0899-1561(1993)5:1(53).

    Article  CAS  Google Scholar 

  • Hoppe Filho, J., Medeiros, M. H. F., Pereira, E., Helene, P., ASCE, M., & Isaia, G. C. (2013). High-volume fly ash concrete with and without hydrated lime: Chloride diffusion coefficient from accelerated test. Journal of Materials in Civil Engineering, 25(3): 411–418. doi:10.1061/(ASCE)MT.1943-5533.0000596.

  • IBGE - Brazilian Institute of Geography and Statistics. (2014). Brazil: 2010 census results. Publishing PhysicsWeb. http://www.ibge.gov.br. Accessed January 21, 2014.

  • IPCC. (2007). Climate change 2007—The fourth assessment report. Cambridge: Cambridge University Press.

    Google Scholar 

  • Isgor, O. B., & Razaqpur, A. G. (2006). Advanced modelling of concrete deterioration due to reinforcement corrosion. Canadian Journal of Civil Engineering, 33(6), 707–718. doi:10.1139/l06-007.

    Article  CAS  Google Scholar 

  • Ismail, M. E., & Soleymani, H. R. (2002). Monitoring corrosion rate for ordinary portland concrete (OPC) and high-performance concrete (HPC) specimens subjected to chloride attack. Canadian Journal of Civil Engineering, 29(6), 863–874. doi:10.1139/l02-091.

    Article  CAS  Google Scholar 

  • Lee, S.-T., Park, D.-W., & Ann, K.-Y. (2008). Mitigating effect of chloride ions on sulfate attack of cement mortars with or without silica fume. Canadian Journal of Civil Engineering, 35(11), 1210–1220. doi:10.1139/L08-065.

    Article  CAS  Google Scholar 

  • Li, Q. J., Mills, L., McNeil, S., & Attoh-Okine, N. O. (2013). Integrating potential climate change into the mechanistic–empirical based pavement design. Canadian Journal of Civil Engineering, 40(12), 1173–1183. doi:10.1139/cjce-2012-0465.

    Article  Google Scholar 

  • Marengo, J. A., Ambrizzi, T., da Rocha, R. P., Alves, L. M., Cuadra, S. V., Valverde, M. C., et al. (2010). Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Climate Dynamics, 35(6), 1073–1097. doi:10.1007/s00382-009-0721-6.

    Article  Google Scholar 

  • McVicar, T. R., & Jupp, D. L. B. (1999). Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models. Agricultural and Forest Meteorology, 96(4), 219–238. doi:10.1016/S0168-1923(99)00052-0.

    Article  Google Scholar 

  • Medeiros, M. H. F., Gobbi, A., Réus, G. C., & Helene, P. (2013). Reinforced concrete in marine environment: Effect of wetting and drying cycles, height and positioning in relation to the sea shore. Construction and Building Materials, 44, 452–457. doi:10.1016/j.conbuildmat.2013.02.078.

    Article  Google Scholar 

  • Medeiros, M. H. F., & Helene, P. (2009). Surface treatment of reinforced concrete in marine environment: Influence on chloride diffusion coefficient and capillary water absorption. Construction and Building Materials, 23(3), 1476–1484. doi:10.1016/j.conbuildmat.2008.06.013.

    Article  Google Scholar 

  • Meijers, S. J. H., Bijen, J. M. J. M., Borst, R., & Fraaij, A. L. A. (2005). Computational results of a model for chloride ingress in concrete including convection, drying-wetting cycles and carbonation. Materials and Structures, 38(2), 145–154. doi:10.1007/BF02479339.

    Article  CAS  Google Scholar 

  • Mejlbro, L. (1996). The complete solution of Fick’s second law of diffusion with time-dependent diffusion coefficient and surface concentration. In Proceeding of the durability of concrete in saline environment, Lund, Sweden, pp. 127–158.

  • Muthulingam, S., & Rao, B. N. (2014). Non-uniform time-to-corrosion initiation in steel reinforced concrete under chloride environment. Corrosion Science, 82(May), 304–315. doi:10.1016/j.corsci.2014.01.023.

    Article  CAS  Google Scholar 

  • NBR 6118. (2014). Projects of concrete structures (in Portuguese). Brazil: Brazilian Association of Technical Standards—ABNT, Rio de Janeiro.

  • Nilsson, L. O. (2000). A numerical model for combined diffusion and convection of chloride in non-saturated concrete. In Proceeding of the second international RILEM workshop on testing and modelling the chloride ingress into concrete, RILEM Publications SARL, pp. 261–275.

  • Page, C. L., Short, N. R., & El Tarras, A. (1981). Diffusion of chloride ions in hardened cement pastes. Cement and Concrete Research, 11(3), 395–406. doi:10.1016/0008-8846(81)90111-3.

    Article  CAS  Google Scholar 

  • Rahman, M., Bolisetti, T., & Balachandar, R. (2012). Hydrologic modelling to assess the climate change impacts in a Southern Ontario watershed. Canadian Journal of Civil Engineering, 39(1), 91–103. doi:10.1139/l11-112.

    Article  Google Scholar 

  • Saetta, A. V., Scotta, R. V., & Vitaliani, R. V. (1993). Analysis of chloride diffusion into partially saturated concrete. ACI Materials Journal, 90(M47), 441–451.

    CAS  Google Scholar 

  • Sao Paulo. (2005). Ecological-economic zoningNorthern Coast of Sao Paulo (in Portuguese). Brazil: Secretary of State for the Environment—CPLEA, Strategic Planning Environmental and Education Coordinator, Department of the Environment.

  • Shafei, B., Alipour, A., & Shinozuka, M. (2012). Prediction of corrosion initiation in reinforced concrete members subjected to environmental stressors: A finite-element framework. Cement and Concrete Research, 42(2), 365–376. doi:10.1016/j.cemconres.2011.11.001.

    Article  CAS  Google Scholar 

  • Tang, L. P., & Nilsson, L. O. (1992). Rapid determination of chloride diffusivity in concrete by applying an electrical field. ACI Materials Journal, 89(1), 49–53.

    CAS  Google Scholar 

  • Vuille, M., Bradley, R. S., Werner, M., & Keimig, F. (2003). 20TH century climate change in the tropical Andes: Observations and model results. Climatic Change, 59, 75–99. doi:10.1007/978-94-015-1252-7_5.

    Article  Google Scholar 

  • Wang, X., Stewart, M. G., & Nguyen, M. C. (2012). Impact of climate change on corrosion and damage to concrete infrastructure in Australia. Climatic Change, 110(3–4), 941–957. doi:10.1007/s10584-011-0124-7.

    Article  Google Scholar 

  • Yuan, Q. (1999). Inner relative humidity and degree of saturation in high-performance concrete stored in water or salt solution for 2 years. Cement and Concrete Research, 29(1), 45–53. doi:10.1016/S0008-8846(98)00174-4.

    Article  Google Scholar 

  • Yuan, Y., & Jiang, J. (2011). Prediction of temperature response in concrete in a natural climate environment. Construction and Building Materials, 25(8), 3159–3167. doi:10.1016/j.conbuildmat.2010.10.008.

    Article  Google Scholar 

  • Yuan, Q., Shi, C., De Schutter, G., & Audenaert, K. (2008). Effect of temperature on transport of chloride ions in concrete. In M. G. Alexander, H.-D. Beushausen, F. Dehn, & P. Moyo (Eds.), Concrete repair, rehabilitation and retrofitting II (pp. 159–160). Leiden: CRC Press/Balkema.

    Chapter  Google Scholar 

  • Zhang, J., Gao, Y., & Han, Y. (2012). Interior humidity of concrete under dry-wet cycles. Journal of Materials in Civil Engineering, 24(3), 289–298. doi:10.1061/(ASCE)MT.1943-5533.0000382.

    Article  CAS  Google Scholar 

  • Zhang, J., & Mailvaganam, N. P. (2006). Corrosion of concrete reinforcement and electrochemical factors in concrete patch repair. Canadian Journal of Civil Engineering, 33(6), 785–793. doi:10.1139/l05-088.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Foundation for Research Support of the State of Sao Paulo (FAPESP), the Coordination of Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), the RedeLitoral research group, the Technological Institute of Aeronautics (ITA), the CCR NovaDutra, the National Institute of Meteorology (INMET), and the Center for Weather Forecasting and Climate Studies/National Institute for Space Research (CPTEC/INPE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo A. de Medeiros-Junior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Medeiros-Junior, R.A., de Lima, M.G. & de Medeiros, M.H.F. Service life of concrete structures considering the effects of temperature and relative humidity on chloride transport. Environ Dev Sustain 17, 1103–1119 (2015). https://doi.org/10.1007/s10668-014-9592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-014-9592-z

Keywords

Navigation