Skip to main content

Determination of the utility of groundwater with respect to the geochemical parameters: a case study from Tuticorin District of Tamil Nadu (India)

Abstract

In modern living, rapid development has created an increase in demand for groundwater. An endeavor has been made to understand the hydrogeochemical parameters to determine the utility of groundwater. This situation is severe in coastal hard rock aquifers due to the influence of salinity ingression and other anthropogenic influence. A total of 135 groundwater samples were collected from the coastal aquifer of the Tuticorin district and analyzed for major cations and anions during premonsoon (PRM) and postmonsoon (POM). The ions analyzed were used to determine the drinking, agricultural and domestic utility of groundwater. The electrical conductivity (EC) contour shows that the groundwater quality is poor along the coast. The parameters were compared with WHO (Guidelines for drinking water quality recommendations, WHO, Geneva, 2004) standard for drinking purpose. A groundwater classification method has been developed for groundwater in the area using a dynamic water quality index (WQI). On the basis of the WQI so computed, groundwater in the area has been spatially classified into “excellent,” “good,” “poor” and “very poor” to “Unsuitable” water types variation lithologywise. Corrosivity ratio and hardness were noted to be higher and found to be unsuitable in majority of the regions for domestic purpose. Higher fluoride concentration was noted in the central part of the study area represented by complex geology comprising of the hornblende biotite gneiss and charnockite. Sodium percentage (Na%), sodium absorption ratio, residual sodium carbonate, Wilcox (Classification and use of irrigation waters, US Department of Agriculture, Washington, 1955), permeability index, residual sodium bicarbonate, magnesium hazard, Kelly’s ratio and potential salinity also indicate that most of the groundwater samples are not suitable for irrigation purposes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Ahmed, S. S., Mazumder, H., Jahan, C. S., Ahmed, M., & Islam, S. (2002). Hydrochemistry and classification of groundwater, Rajshahi City Corporation Area, Bangladesh. Journal of the Geological Society of India, 60, 411–418.

    CAS  Google Scholar 

  • Anandhan, P., Ramanathan, A. L., Chidambaram, S., Manivannan, R., Ganesh, N., & Srinivasamoorthy, K. (2000). A study on the seasonal variation in the geochemistry of the groundwater in around Neyveli region, Tamilnadu. Of International Seminar on Applied Hydrogeochemistry, (ISAH’00), Annamalai University, 86–105 pp.

  • Andrew, A. A., Shimada, J., Hosono, T., Ichiyanagi, K., Nkeng, G. E., Fantong, W. Y., et al. (2011). Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line. Environmental Geochemistry and Health, 33, 559–575. doi:10.1007/s10653-010-9371-1.

    Article  Google Scholar 

  • APHA. (1992). Standard methods for the examination of water and wastewater (p. 326). Washington, DC: American Public Health Association.

    Google Scholar 

  • Avvannavar, S. M., & Shrihari, S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring and Assessment, 143, 279–290.

    CAS  Article  Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture FAO irrigation and drain. Paper no 29(1), 1–109.

  • Bathrellos, G. D., Skilodimou, H. D., Kelepertsis, A., Alexakis, D., Chrisanthaki, I., & Archonti, D. (2008). Environmental research of groundwater in the urban and suburban areas of Attica region, Greece. Environmental Geology, 56, 11–18.

    CAS  Article  Google Scholar 

  • Belgiorno, V., & Napoli, R. M. (2000). Groundwater quality monitorin. Water Science & Technology, 42(1–2), 37–41.

    Google Scholar 

  • Bhargava, D. S., & Killender, D. J. (1988). The technology of water resources in industries. A rational approach. Journal Industrial Water Works Association, 20, 107–112.

    Google Scholar 

  • Bohlke, J. K. (2002). Groundwater recharge and agricultural contamination. Hydrogeology Journal, 10, 153–179.

    CAS  Article  Google Scholar 

  • Bouwer, H. (1978). Groundwater quality, groundwater hydrology (pp. 339–375). Mc.Graw-Hill Kogakusha Ltd.

  • Cao, J., Zhao, Y., Lin, J. W., Xirao, R. D., & Danzeng, S. B. (2000). Environmental fluoride in Tibet. Environmental Research, 83, 333–337.

    Article  Google Scholar 

  • CGWB. (2009). South Eastern Coastal Region District groundwater brochure. Tamil Nadu: Tuticorin district.

    Google Scholar 

  • Chandu, S. N., Subbarao, V., & Raviprekash, S. (2008). Suitability of groundwater for domestic and irrigational purpose in some parts of Jhansi District, India. Bhu-jal New, 10, 12–18.

    Google Scholar 

  • Chaturvedi, (1990). Defluoridation of water by adsorption on fly ash. Water, Air, and Soil pollution, 49, 51–61.

    CAS  Article  Google Scholar 

  • Chidambaram, S. (2000). Hydrogeochemical studies of groundwater in Periyar district, Tamilnadu, India. unpublished Ph.D. thesis, Department of Geology, Annamalai University, Tamilnadu, India.

  • Chidambaram, S., Bala Krishna Prasad, M., Manivannan, R., Karmegam, U., Singaraja, C., Anandhan, P., et al. (2012). Environmental hydrogeochemistry and genesis of fluoride in groundwaters of Dindigul district, Tamilnadu (India). Environmental Earth Science, 68(2), 333–342. doi:10.1007/s12665-012-1741-9.

    Google Scholar 

  • Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Anandhan, P, Srinivasamoorthy, K., & Vasudeven, S. (2007). Identification of Hrogeochemically Active Regimes in Groundwaters of Erode District, Tamilnadu A Statistical Approach. Asian Journal of water, Environment and pollution, 5(3), 93–102.

    Google Scholar 

  • Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Karmegam, U., Dheivanayagi, V., & Ramesh, R. (2010). Study on the hydrogeochemical characteristics in groundwater, post- and pre-tsunami scenario, from Portnova to Pumpuhar, southeast coast of India. Environmental Monitoring and Assessment, 169, 553–568.

    CAS  Article  Google Scholar 

  • Chidambaram, S., Ramanathan, A. L., & Srinivasamoorthy, K. (2003). Lithological influence on the groundwater chemistry, Periyar District a case study. In: Conference on coastal and freshwater issues, Paper 7.

  • Chidambaram, S., Ramanathan, A. L., Srinivasamoorthy, K., & Anandhan, P. (2003). WATCLASTa computer program for hydrogeochemical studies. Recent trends in Hydrogeochemistry (case studies from surface and subsurface waters of selected countries) (pp. 203–207). New Delhi: Capital Publishing Company.

  • Deepu, T. R., & Shaji, E. (2011). Fluoride contamination in groundwater resources of Chittur block, Palghat district, Kerala, India—A health risk. Disaster, Risk and Vulnerablity Conference 2011. School of Environmental Sciences, Mahatma Gandhi University, India in association with the Applied Geoinformatics for Society and Environment, Germany March 12–14.

  • Doneen, L. D. (1954). Salination of soil by salts in the irrigation water. Transcation, American Geophysical Union, 35, 943–950.

    CAS  Article  Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69, 123–133.

    CAS  Article  Google Scholar 

  • Eaton, A. D., Clesceri, L., & Greenberg, A. E. (1995). Standard methods for the examination of water and wastewater (Vol. 19th). Washington, DC: American Public Health Association.

  • Farooqi, A., Masuda, H., & Firdous, N. (2007). Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Journal of Environmental Pollution, 145, 839–849.

    CAS  Article  Google Scholar 

  • Forstner, U. K., & Wittman, G. T. W. (1981). Metal pollution in the aquatic environment (p. 255). Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Freeze, A. R., & Cherry, J. A. (1979). Groundwater (p. 604). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gaciri, S. J., & Davies, T. C. (1993). The occurrence and geochemistry of fluonde in some natural waters of Kenya. Journal of Hydrology, 143, 395–412.

    Google Scholar 

  • Gangai, I. P. D., & Ramachandran, S. (2010). The role of spatial planning in coastal management—A case study of Tuticorin coast (India). Land Use Policy, 27, 518–534.

    Article  Google Scholar 

  • Gupta, I. C. (1990). Use of saline water in Agriculture, A Study of Arid and Semiarid Zones of India, Revised Edn. New Delhi: Oxford and IBH Publishing Co, Pvt. Ltd.

  • Gupta, S. K., Deshpande, R. D., Agarwal, M., & Raval, B. R. (2005). Origin of high fluoride in groundwater in theNorth Gujarat-Cambay region, India. Hydrogeology Journal, 13, 596–605.

    CAS  Article  Google Scholar 

  • Gupta, S. K., & Gupta, I. C. (1987). Management of saline soils and waters (p. 339). New Delhi: Oxford and IBH Publishing and Co.

    Google Scholar 

  • Handa, B. K. (1964). Modified classification procedure for rating irrigation waters. Soil Science, 98(2), 264–269.

    Article  Google Scholar 

  • Handa, B. K. (1975). Geochemistry and genesis of fluoride containing groundwater in India. Ground Water, 13, 275–281.

    CAS  Article  Google Scholar 

  • Hem, J. O. (1959). Study and interpretation of chemical characteristics of natural water (p. 1473). U.G: Geological Survey Water Supply Paper.

    Google Scholar 

  • Hussain, J., Hussain, I., & Sharma, K. C. (2010). Fluoride and health hazards: community perception in a fluorotic area of Central Rajasthan (India): an arid environment. Environmental Monitoring and Assessment, 162, 1–14.

    CAS  Article  Google Scholar 

  • Hussain, I., Hussain, J., Sharma, K. C., & Ojha, K. G. (2002). Fluoride in drinking water and health hazardous: Some observations on fluoride distribution Rajasthan. In environmental scenario of 21st century (pp. 355–374). New Delhi: APH.

  • Jacks, G., Bhattacharya, P., Choudary, V., & Singh, K. P. (2005). Controls on the genesis of some high fluoride ground waters in India. Applied Geochemistry, 20, 221–228.

    CAS  Article  Google Scholar 

  • Jalali, M. (2007). Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran. Environmental Monitoring and Assessment, 130, 347–364.

    CAS  Article  Google Scholar 

  • Jalali, M. (2008). Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran. Environmental Geology, 51, 433–446.

    Article  Google Scholar 

  • Jalali, M., & Kolahchi, Z. (2008). Groundwater quality in an irrigated, agricultural area of northern Malayer, western Iran. Nutrient Cycling in Agroecosystems, 80, 95–105.

    Article  Google Scholar 

  • JanardhanaRaju, N. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environmental Geology, 52, 1067–1074. doi:10.1007/s00254-006-0546-0.

    Article  Google Scholar 

  • Joshi, D. M., Kumar, A., & Agrawal, N. (2009). Assessment of the irrigation water quality of river Ganga in Haridwar District India. Journal of chemistry, 2(2), 285–292.

    CAS  Google Scholar 

  • Joshi, M. C., Thukrai, A. K., & Chand, R. (1982). Water pollution due to tailings from copper complex KhetrinagerJhunJundu District, Rajasthan. Indian Journal of Environmental Health, 24, 292–297.

    CAS  Google Scholar 

  • Jubb, T. F., Annand, T. E., Main, D. C., & Murphy, G. M. (1993). Phosphorus supplements and fluorosis in Cattle—A northern Australian experience. Australian Veterinary Journal, 70, 379–383.

    CAS  Article  Google Scholar 

  • Kakar, Y., Sikka, P., Dasjaneshwar, V. M., & Bhatnagar, N. C. (1989). Hydrogeochemistry and pollution of ground water in fabricated areas, Haryana (pp. 1–31). Chandigarch, India: Central Groundwater Board.

    Google Scholar 

  • Kelly, W. P. (1963). Use of Saline Irrigation Water. Soil Science, 95(4), 355-391.

    Google Scholar 

  • Kelly, W. E. (1976). Geoelectric sounding for delineating groundwater contamination. Ground Water, 14, 6–10.

    Article  Google Scholar 

  • Krishnappa, A. N., & Shinde, J. E. (1980). Fact of N labelled urea fertilized under conditions of tropical flooded rice culture (p. 127). Vienna: IAEA.

    Google Scholar 

  • Krishnaswamy, V., Ravichandran, S., Tamilselvam, C., Lawrence, A. R., & Stuart, M. E. (1993). Impact of Agriculture and groundwater quality in the alluvial aquifer of Madras, India. Keyworth Nottingham, shiri, UK: British Geological Survey.

  • Kumar, M., Kumari, K., Singh, U. K., & Ramananthan, A. L. (2009). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate statistical approach. Environmental Geology, 57, 873–884.

    CAS  Article  Google Scholar 

  • Kundu, N., Panigrahi, M. K., Tripathy, S., Munshi, S., Powell, M. A., & Hart, B. R. (2001). Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh district of Orissa, India. Environmental Geology, 41, 451–460.

    CAS  Article  Google Scholar 

  • Laluraj, C. M., Gopinath, G., & Dineshkumar, P. K. (2005). Groundwater chemistry of shallow aquifers in the coastal zones of Cochin, India. Applied Geology and Environmental Research, 3(1), 133–139.

    Google Scholar 

  • Li, Z., Tainosho, Y., Shiraishi, K., & Owada, M. (2003). Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sor Rondane Mountains. East Antarctica Geochemical Journal, 37, 145–161.

    CAS  Article  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.

    CAS  Article  Google Scholar 

  • Manikandan, S., Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Karmegam, U., Singaraja, C., et al. (2012). A study on the high fluoride concentration in the magnesium-rich waters of hard rock aquiferin Krishnagiri district, Tamilnadu, India. Arabian Journal of Geosciences,. doi:10.1007/s12517-012-0752-x.

    Google Scholar 

  • ManishKumar, K., Singh, U., & Ramananthan, A. L. (2009). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate approach. Environmental Geology, 57, 873–884. doi:10.1007/s00254-008-1367-0.

    Google Scholar 

  • Miller, G. T. (1979). Living in the environment: Belmond California (p. 470). USA: Wadsworth Publishing Company.

  • Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River, Southeastern Europe. Desalination, 213, 159–173.

    CAS  Article  Google Scholar 

  • Mishra, P. C., & Patel, R. K. (2001). Study of the pollution load in the drinking water of Rairangpur, a small tribal dominated town of North Orissa. Indian Journal of Environment and Ecoplanning, 5(2), 293–298.

    Google Scholar 

  • Mitra, B. K. (1998). Spatial and temporal variation of ground water quality in sand dune area of aomori prefecture in Japan, Paper number 062023, 2006 ASAE Annual Meeting.

  • Mohan, R., Singh, A. K., Tripathi, J. K., & Chowdhary, G. C. (2000). Hydrochemistry and quality assessment of groundwater in Naini industrial area, Allahabad District, Uttapradesh. Journal of the Geological Society of India, 55, 77–90.

    CAS  Google Scholar 

  • Mondal, P., Majumder, C. B., & Mohanty, B. (2008). Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Journal of Hazardous Materials, 150, 695–702.

    CAS  Article  Google Scholar 

  • Mondal, N. C., Singh, V. S., & Rangarajan, R. (2009). Aquifer characteristics and its modeling around an industrial complex, Tuticorin, Tamil Nadu, India: A case study. Journal of Earth System Sciences, 188(3), 231–244.

    Article  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, S., & Singh, V. S. (2011). Hydrochemical characteristic of coastal aquifer from Tuticorin, Tamil Nadu, India. Environmental Monitoring and Assessment, 175, 531–550. doi:10.1007/s10661-010-1549-6.

    CAS  Article  Google Scholar 

  • Nordstrom, D. K., Ball, J. W., Donahoe, R. J., & Whittemore, D. (1989). Groundwater chemistry and water–rock interactions at Stripa. Geochimica et Cosmochimica Acta, 53, 1727–1740.

    CAS  Article  Google Scholar 

  • Oinam, J. D., Ramanathan, A. L., & Singh, G. (2012). Geochemical and statistical evaluation of groundwater in Imphal and Thoubal district of Manipur, India. Journal of Asian Earth Sciences, 48, 136–149.

    Article  Google Scholar 

  • Oladeji, O. S., Adewoye, A. O., & Adegbola, A. A. (2012). Suitability assessment of groundwater resources for irrigation around Otte Village, Kwara State, Nigeria. International Journal of Applied Sciences and Engineering Research, 1(3), 437–445.

    Google Scholar 

  • Polemio, M., Dragone, V., & Limoni, P. P. (2006). Salt contamination in Apulian aquifer: Spatial and time trend. In Proceedings of 1st SWIM-SWICA (19th Salt Water Intrusion Meeting3rd Salt Water Intrusion in Coastal Aquifers), Cagliari.

  • Prasad, N. B. N. (1984). Hydrogeological studies in the Bhadra River Basin. Ph.D. thesis, University of Mysore, Karnataka, India, 323 p.

  • Prasanna, M. V., Chidambaram, S., Pethaperumal, S., Srinivasamoorthy, K., John Peter, A., Anandhan, P. M., et al. (2008). Integrated geophysical and chemical study in the lower subbasin of Gadilam River, Tamilnadu, India. Environmental Geosciences, 15(4), 145–152.

    Article  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., ShahulHameed, A., & Srinivasamoorthy, K. (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environmental Monitoring and Assessment, 168, 63–90.

    CAS  Article  Google Scholar 

  • Puthiyasekar, C., Neelakandan, M. A., & Poongothai, S. (2010). Heavy metal contamination in bore water due to industrial pollution and polluted and non polluted sea water intrusion in Thoothukudi and Tirunelveli of South Tamil Nadu, India. Bulletin of Environment Contamination and Toxicology, 85, 598–601.

    CAS  Article  Google Scholar 

  • Raghunath, H. M. (1987). Geochemical survey and water quality (pp. 343–347). New Delhi: Groundwater Wiley eastern limited.

    Google Scholar 

  • Rajmohan, N. (2003). Major correlation in ground water of Kancheepuram region, South India. Indian Journal of Environmental Health, 45(1), 1–5.

    Google Scholar 

  • Rajmohan, N., Al-Futaisi, A., & Jamrah, A. (2007). Evaluation of long-term groundwater level data in regular monitoring wells, Barka, Sultanate of Oman. Hydrol Process, 21, 3367–3379.

    Google Scholar 

  • Ramachandran, M., Sabarathinam, C., Ulaganthan, K., Paluchamy, A., Sivaji, M., & Hameed, S. (2010). Mapping of fluoride ions in groundwater of Dindigul district, Tamilnadu, India—using GIS technique. Arabian Journal of Geosciences, 5, 433–439. doi:10.1007/s12517-010-0216-0.

    Google Scholar 

  • Ramanathan, S. (1956). Ultrabasic rock of Salem and Dodkanya and their relationship with Charnocite. Published Ph.Dthesis, University of Madras.

  • Ramanathan, A. L. (1992). Geochemical studies in the Cauvery river basin. Ph.D thesis, Punjab University, Chandigarh.

  • Ramesh, R., & Anbu, M. (1996). Chemical methods for environmental analysis. Water and Sediment, 1, 1–16.

  • Ramkumar, T., Venkatramanan, S., Anitha Mary, I., Tamilselvi, M., & Ramesh, G. (2010). Hydrogeochemical quality of groundwater in Vedaraniyam Town, Tamilnadu, India. Research Journal of Environmental and Earth Sciences, 2(1), 44–48.

    CAS  Google Scholar 

  • Ravichandran, S. (2003). Hydrological influences on the water quality trends in Tamiraparani basin, South India. Environmental Monitoring and Assessment, 87, 293–309.

    CAS  Article  Google Scholar 

  • Reddy, D. V., Nagabhushanam, P., Sukhija, B. S., Reddy, A. G. S., & Smedley, P. L. (2010). Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India. Chemical Geology, 269, 278–289.

    CAS  Article  Google Scholar 

  • Reijnders, H. F. R., Van Drecht, G., Prins, H. F., & Boumans, L. J. M. (1998). The quality of the groundwater in the Netherlands. Jornal of Hydrology, 207, 179–188.

  • Richard, L. A. (1954). Diagnosis and improvement of saline and alkali soils (p. 160). Agricultural hand book 60. Washington, DC: USDA, 160 pp.

  • Ripa, L. W. (1993). A half-century of community water fluoridation in the United States: review and commentary. Journal of Public Health Dentistry, 53, 17–44.

    CAS  Article  Google Scholar 

  • Ryznes, J. W. (1944). A new index for determining amount of calcium carbonate scale formed by water. Journal American Water Works Association, 36, 472–486.

    Google Scholar 

  • Saxena, V. K., & Ahmed, S. (2001a). Dissolution of fluoride in groundwater: A water–rock interaction study. Environmental Geology, 40, 1084–1087.

    CAS  Article  Google Scholar 

  • Saxena, V. K., & Ahmed, S. (2001b). Dissolution of fluoride in groundwater: a water–rock interaction study. Environmental Geology, 40, 1084–1087.

    CAS  Article  Google Scholar 

  • Selvin Pitchaikani, J., Ananthan, G., & Sudhakar, M. (2010). Studies on the effect of coolant water effluent of tuticorin thermal power station on hydro biological characteristics of Tuticorin Coastal Waters, South East Coast of India. Current Research Journal of Biological Sciences, 2(2), 118–123.

    CAS  Google Scholar 

  • Shaji, E., Bindu, Viju, J., & Thambi, D. S. (2007). High fluoride in groundwater of Palghat district, Kerala. Current Science, 92, 240–245.

    CAS  Google Scholar 

  • Shamsun Nahar, M. S., & Zhang, J. (2012). Assessment of potable water quality including organic, inorganic, and trace metal concentrations. Environmental Geochemistry and Health, 34, 141–150. doi:10.1007/s10653-011-9397-z.

    Article  Google Scholar 

  • Shortt, W. E. (1937). Endemic fluorosis in Nellore District, South India. Indian Medical Gazette, 72, 396–403.

    Google Scholar 

  • Shusheela, A. K. (1993). Prevention and control of fluorosis in India. Rajeev Gandhi National Drinking Water Mission. Ministry of Rural Development, New Delhi Health, 1, 20–22.

    Google Scholar 

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasann, M. V., Thivya, C., & Thilagavathi, R. (2012a). A study on the status of fluoride ion in groundwater of coastal hard rock aquifers of south India. Arabian Journal of Geosciences, 6, 4167–4177. doi:10.1007/s12517-012-0675-6.

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Paramaguru, P., Johnsonbabu, T. C., & Thilagavathi, R. (2012b). A study on the behavior of the dissolved oxygen in the shallow coastal wells of Cuddalore District, Tamilnadu, India. Water Quality, Exposure and Health, 4(1), 1–16. doi:10.1007/s12403-011-0058-3.

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasanna, M. V., Thivya, C., Thilagavathi, R., et al. (2013a). Hydrochemistry of groundwater in a coastal region and its repercussion on quality, a case study—Thoothukudi district, Tamilnadu, India. Arabian Journal of Geosciences,. doi:10.1007/s12517-012-0794-0.

    Google Scholar 

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2013b). Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India. Environ Earth Science,. doi:10.1007/s12665-013-2453-5.

    Google Scholar 

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2013c). Appraisal of water quality pollution (2013c) Indices for heavy metal contamination monitoring: A case study from Thoothukudi Districts, Tamilnadu, India. Inventi Rapid: Water & Environment, 4, 1–5.

    Google Scholar 

  • Singh, V. S., Mondal, N. C., Singh, S., & Negi, B. C. (2006). Hydrogeological and geophysical investigations to delineate aquifer zone around SIIL, Tuticorin, Tamilnadu, (p. 24). Technical report. no. NGRI-2006-GW- 564.

  • Smith, S. J., Andres, R., Conception, E., & Lurz, J. (2004). Sulfur dioxide emissions pp. 1850–2000 (JGCRI Report. PNNL-14537).

  • Solai, A., Suresh Gandhi, M., Chandrasekaran, K., & Ram Mohan, V. (2012). Depositional environment in and around Tamiraparani estuary, and off Tuticorin, Tamil Nadu, India: Clues from grain size studies. Arabian Journal of Geosciences, 6(7), 2419–2446. doi:10.1007/s12517-012-0520-y.

    Google Scholar 

  • Sreedevi, P. D. (2004). Groundwater quality of Pageru river basin, Cudapah district, Andhra Pradesh. Journal of the Geological Society of India, 64, 619–636.

    CAS  Google Scholar 

  • Srinivasamoorthy, K. (2005). Hydrogeochemistry of Groundwater in Salem district, Tamilnadu, India. Published PhD thesis, Annamalai University.

  • Srinivasamoorthy, K., Chidambaram, S., & Vasanthavigar, M. (2008). Geochemistry of fluorides in groundwater: Salem District, Tamilnadu, India. Journal of Environmental Hydrology, 16, 25.

    Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon river. The influence of geology and weathering environment on the dissolved load; J. Geophysics, 88, 9671–9688.

    CAS  Article  Google Scholar 

  • Stuyfzand, P. J. (1989). Nonpoint sources of trace elements in potable groundwaters in the Netherlands. In Proceedings 18th TWSA water workings. Testing and Research Institute KlWA.

  • Subba Rao, N., & Devadas, D. J. (2003). Fluoride incidence in groundwater in a area of Peninsula India. Environmental Geology, 45, 243–251.

    Article  Google Scholar 

  • Subba Rao, N., Prakasa Rao, J., Nagamalleswara Rao, B., Nirranjan Babu, P., Madhusudhana Reddy, P., & John Devadas, D. (1998). A preliminary report on fluoride content in groundwaters of Guntur area, Andhra Pradesh, India. Current Scence, 75, 887–888.

    Google Scholar 

  • Subba Rao, N., Prakasa Rao, J., John Devadas, D., Srinivasa Rao, K. V., Krishna, C., & Nagamalleswara Rao, B. (2002). Hydrogeochemistry and groundwater quality in a developing urban environment of a semi-arid region, Guntur, Andhra Pradesh. Journal of the Geological Society of India, 59, 159–166.

  • Subba Rao, N., Surya Rao, P., Venktram Reddy, G., Nagamani, M., Vidyasagar, G., & Satyanarayana, N. L. V. (2012). Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 184, 5189–5214. doi:10.1007/s10661-011-2333-y.

    Article  Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamilnadu, India. Environmental Geology, 47, 1099–1110.

    CAS  Article  Google Scholar 

  • Suttie, J. W. (1969). Fluoride content of commercial dairy concentrates and alfalfa forage. Journal of Agricultural and Food Chemistry, 17, 1350–1352.

    CAS  Article  Google Scholar 

  • Szaboles, I., & Darab, C. (1964). The influence of irrigation water of high sodium carbonate content of soils. In Proceedings of 8th international congress of ISSS, Trans, II (pp. 803–812).

  • Thilagavathi, R., Chidambaram, S., Prasanna, M. V., Thivya, C., & Singaraja, C. (2012). A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Applied Water Science, 2, 253–269. doi:10.1007/s13201-012-0045-2.

  • Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M. V., & Jainab, (2013a). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environment, Development and Sustainability, 15, 1365–1387. doi:10.1007/s10668-013-9439-z.

  • Thivya, C., Chidambaram, S., Thilagavathi, R., Prasanna, M. V., Singaraja, C., Nepolian, M., et al. (2013b). Identification of the geochemical processes in groundwater by factor analysis in hard rock aquifers of Madurai District, South India. Arabian Journal of Geosciences,. doi:10.1007/s12517-013-1065-4.

    Google Scholar 

  • Tijani, M. N. (1994). Hydrochemical assessment of groundwater in Moro area, Kw ara State, Nigeria. Environmental Geology, 24, 194–202.

    CAS  Article  Google Scholar 

  • Twarakavi, N. K. C., & Kaluarachchi, J. J. (2006). Sustainability of groundwater quality considering land use changes and public health risks. Journal of Environmental Management, 81, 405–419.

    CAS  Article  Google Scholar 

  • Umar, R., & Ahmad, M. S. (2000). Groundwater quality in parts of central Gang Basin, India. Environmental Geology, 39(6), 673–678.

    Google Scholar 

  • USPHS. (1987). Drinking water standards. Washington, DC: United States Public Health Services.

    Google Scholar 

  • USPHS. (1991). US Public Health Service, PHS review of fluoride: Benefits and risk: report of ad hoc sub-committee on fluoride. Committee to co-ordinate environments health and related programs.

  • USEPA (1995). Drinking water criteria document on fluoride office of drinking water (pp. TR- 832–TR- 51985). Washington: USEPA.

  • Valenzuela-Vasquez, L., Ramirez-Hernandez, J., Reyes-Lopez, A., & Soluribe, O. (2006). The origin of fluoride in groundwater supply to Hermosillo City, Sonora, Mexico. Environmental Geology, 51, 17–27.

    CAS  Article  Google Scholar 

  • Veeraputhiran, V., & Alagumuthu, G. (2010). A report on Fluoride distribution in drinking Water. International journal of environmental sciences, 1(4), 558–566.

    Google Scholar 

  • Wen, X., Wu, Y., Su, J., Zhang, Y., & Liu, F. (2005). Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environmental Geology, 48, 665–675. doi:10.1007/s00254-005-0001-7.

  • Wen, X. H., Wu, Y. Q., & Wu, J. (2008). Hydrochemical characteristics of groundwater in the Zhangye basin, northwestern China. Environmental Geology, 55, 1713–1724.

    CAS  Article  Google Scholar 

  • White, D. E., Hem, J. D., & Warming, G. A. (1963). Chemical composition of subsurface water.US Geological Survey Professor Paper: 440-F.

  • WHO (World Health Organization). (2004). Guidelines for drinking water quality recommendations (Vol 1, pp. 515). Geneva: WHO.

  • Wilcox, L.V. (1955). Classification and use of irrigation waters (p. 19). U.S. Department of Agriculture, Circulation 969, Washington, DC.

  • Wodeyar, B. K., & Sreenivasan, G. (1996). Occurrence of fluoride in the groundwaters and its impact in Peddavankahalla Basin, Bellary District, Karnataka, India—A preliminary study. Current Science, 70, 71–74.

    CAS  Google Scholar 

  • Woo, N.-C., Moon, J.-W., Won, J.-S., Hahn, J.-S., Lin, X.-Y., & Zhao, Y.-S. (1999). Water quality and pollution in the Hunchun basin. China, Environmental Geochemistry and Health, 22, 1–18.

    Article  Google Scholar 

  • World Health Organization. (1997). Guideline for drinking water quality health criteria and other supporting information (2nd ed., Vol. 2). Geneva: WHO.

  • Yidana, S. M., Ophori, D., & Banoeng-Yakubo, B. (2010). Hydrogeological and hydrochemical characterization of the Voltaian Basin: The Afram Plains area, Ghana. Environmental Geology, 53, 1213–1223.

    Article  Google Scholar 

  • Yuce, G. (2007). A geochemical study of the groundwater in the Misli basin and environmental implications. Environmental Geology, 51, 857–868.

    CAS  Article  Google Scholar 

  • Yun, S. T., Chae, G. T., Koh, Y. K., Kim, S. R., Choi, B. Y., Lee, B. H., et al. (1998). Hydrogeochemical and environmental isotope study of groundwaters in the Pungki area. Journal of Korean Social Groundwater Environmental, 5, 177–191.

    Google Scholar 

  • Yvonne, A. S., BanoengYakubo, E. B., Daniel, E., Asiedu, K., Sandow, E., & Yidana, M. (2008). Water quality analysis of groundwater in crystalline basement rocks, northern Ghana. Environmental Geology, 58(5), 989–997. doi:10.1007/s00254-008-1578-4.

  • Zhao, J., Guo, F., Lei, K., & Yanwu, L. (2011). Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management. Journal of Environmental Sciences, 23(9), 1460–1471.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Singaraja.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singaraja, C., Chidambaram, S., Anandhan, P. et al. Determination of the utility of groundwater with respect to the geochemical parameters: a case study from Tuticorin District of Tamil Nadu (India). Environ Dev Sustain 16, 689–721 (2014). https://doi.org/10.1007/s10668-013-9502-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-013-9502-9

Keywords

  • Groundwater
  • Coastal aquifer
  • Electrical conductivity
  • Water quality index
  • Domestic and irrigation