Environment, Development and Sustainability

, Volume 15, Issue 4, pp 1037–1048 | Cite as

Hydrological benefits in the context of Brazilian environmental services program

  • Dulce Buchala Bicca RodriguesEmail author
  • Paulo Tarso Sanches Oliveira
  • Teodorico Alves Sobrinho
  • Eduardo Mario Mendiondo


The Brazilian program of payment for environmental services (PES) is based on ranges of potential erosion decrease (ED) from soil and water conservation proposals estimated from the Universal Soil Loss Equation. Changes in land use and land cover (LULC) result in many alterations of the basin water balance. Therefore, to contribute to the methodological development of Brazilian PES, this paper proposes a quantification of hydrological benefits based on conservation measures. We propose basing the PES program on adding the potential water storage increase (WSI) parameter estimated from the runoff curve number model. Two LULC change scenarios were run considering conservation measures on degraded areas. We found that indicators of ED and WSI were compatible tools for driving the eligibility of soil and water conservation measures. However, the water storage parameter seems to be better at managing the PES mechanism because it is based on water prices and can contribute to appreciation of the efforts performed by the rural producers. The use of the SCS-CN method presents greater feasibility as a tool for the implementation of PES programs in ungauged basins. Thus, an analysis of the success of the innovation proposal of the Brazilian PES program allows inferences to be made about the quantification and financial valuation of hydrological benefits of the potential storage increase and current water price.


Water erosion Hydrological services Land use change SCS-CN method USLE model 



The authors thank the National Council for Scientific and Technological Development (CNPq), the Foundation to Support the Development of Education, Science and Technology of the State of Mato Grosso do Sul (Fundect), and the São Paulo Research Foundation (FAPESP, Process 2011/11653-0 and 2008/58161-1) for supporting the study.


  1. ANA—Agência Nacional de Águas. (2008). Manual Operativo do Programa Produtor de Água. Brasília: Superintendência de Usos Múltiplos. October 2009.
  2. ANA—Agência Nacional de Águas. (2009). A Implementação da Cobrança pelo Uso de Recursos Hídricos e Agência de Água das Bacias dos Rios Piracicaba, Capivari e Jundiaí (p. 112). Brasília: ANA, Superintendência de Apoio à Gestão de Recursos Hídricos.Google Scholar
  3. Boyd, J. W. (2008). Counting nonmarket, ecological public goods: The elements of a welfare-significant ecological quantity index. RFF discussion paper 07-42.Google Scholar
  4. Chaves, H. M. L., Braga, B., Domingues, A.F., & Santos, D. G. (2004). Quantificação dos benefícios ambientais e compensações financeiras do “Programa do Produtor de Água” (ANA): I—Teoria. Revista Brasileira de Recursos Hídricos, 9, 5–14. November 2012.
  5. Costanza, R., D’arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature. doi: 10.1038/387253a0.
  6. Elhakeem, M., & Papanicolaou, A. N. (2009). Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA. Water Resources Management. doi: 10.1007/s11269-008-9390-1.
  7. Gabellani, S., Silvestro, F., Rudari, R., & Boni, G. (2008). General calibration methodology for a combined Horton-SCS infiltration scheme in flash flood modeling. Natural Hazards and Earth System Sciences. doi: 10.5194/nhess-8-1317-2008.
  8. George, A., Pierret, A., Boonsaner, A., Valentin, C., Orange, D., & Planchon, O. (2009). Potential and limitations of payments for environmental services (PES) as a means to manage watershed services in mainland Southeast Asia. International Journal of the Commons, 3(1), 16–40.Google Scholar
  9. Grolleau, G., & McCann, L. M. J. (2012). Designing watershed programs to pay farmers for water quality services: Case studies of Munich and New York City. Ecological Economics. doi: 10.1016/j.ecolecon.2012.02.006.
  10. INPE—Instituto Nacional de Pesquisas Espaciais. (2008). LANDSAT 5 TM imagery, channels 1, 2, 3, 4, 5, 6, 7, orbit 225, position 74 on 18 December 2008. Instituto Nacional de Pesquisas Espaciais, São José dos Campos. 17 March 2009.
  11. Jack, B. K. (2009). Upstream–downstream transactions and watershed externalities: Experimental evidence from Kenya. Ecological Economics. doi: 10.1016/j.ecolecon.2008.12.002.
  12. Kinnell, P. I. A. (2010). Event soil loss, runoff and the universal soil loss equation family of models: A review. Journal of Hydrology. doi: 10.1016/j.jhydrol.2010.01.024.
  13. Kosoy, N., Martinez-Tuna, M., Muradian, R., & Martinez-Alier, J. (2007). Payments for environmental services in watersheds: Insights from a comparative study of three cases in Central America. Ecological Economics. doi: 10.1016/j.ecolecon.2006.03.016.
  14. Lele, S. (2009). Watershed services of tropical forests: from hydrology to economic valuation to integrated analysis. Current Opinion in Environmental Sustainability. doi: 10.1016/j.cosust.2009.10.007.
  15. Locatelli, B., & Vignola, R. (2009). Managing watershed services of tropical forests and plantations: Can meta-analyses help? Forest Ecology and Management. doi: 10.1016/j.foreco.2009.01.015.
  16. Mishra, S. K., & Singh, V. P. (2004). Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates. Hydrological Processes. doi: 10.1002/hyp.1223.
  17. Moreno-Sanchez, R., Maldonado, J. H., Wunder, S., & Borda-Almanza, C. (2012). Heterogeneous users and willingness to pay in an ongoing payment for watershed protection initiative in the Colombian Andes. Ecological Economics. doi: 10.1016/j.ecolecon.2012.01.009.
  18. Muradian, R., & Rival, L. (2012). Between markets and hierarchies: The challenge of governing ecosystem services. Ecosystem Services. doi: 10.1016/j.ecoser.2012.07.009.
  19. NRCS—Natural Resources Conservation Service. (2004). National engineering handbook. Part 630 hydrology, 210-VI-NEH-630.10 (pp. 10.1–10.21). Washington, DC: US Department of Agriculture.Google Scholar
  20. Rodrigues, D. B. B., Alves Sobrinho, T., Oliveira, P. T. S., & Panachuki, E. (2011). New approach to the Brazilian model of environmental services. Revista Brasileira de Ciência do Solo. doi: 10.1590/S0100-06832011000300037.
  21. SCS—Soil Conservation Service. (1956). National engineering handbook, section 4, chapter 10. Washington, DC: US Department of Agriculture.Google Scholar
  22. Seidl, A. F., Silva, J. D. S. V. D., & Moraes, A. S. (2001). Cattle ranching and deforestation in the Brazilian Pantanal. Ecological Economics. doi: 10.1016/S0921-8009(00)00238-X.
  23. Shi, Z., Chen, L., Fang, N., Qin, D., & Cai, C. (2009). Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena. doi: 10.1016/j.catena.2008.11.006.
  24. USDA—United States Department of Agriculture (1986) Urban hydrology for small watersheds. Soil Conservation Service, Engineering Division. Technical release 55 version 2.31. October 2012.
  25. Wantzen, K. M., Santos, S. A., da Cunha, C. N., Junk, W. J., Girard, P., Rossetto, O. C., et al. (2008). Towards a sustainable management concept for ecosystem services of the Pantanal wetland. Ecohydrology and Hydrobiology. doi: 10.2478/v10104-009-0009-9.
  26. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide for conservation planning. Handbook no. 537. Washington, DC: USDA.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Dulce Buchala Bicca Rodrigues
    • 1
    Email author
  • Paulo Tarso Sanches Oliveira
    • 1
  • Teodorico Alves Sobrinho
    • 2
  • Eduardo Mario Mendiondo
    • 1
  1. 1.University of São PauloSão CarlosBrazil
  2. 2.Federal University of Mato Grosso do SulCampo GrandeBrazil

Personalised recommendations