Environment, Development and Sustainability

, Volume 7, Issue 1, pp 161–184 | Cite as

The Potential of Soil Carbon Sequestration Through Improved Management Practices in Norway



The study was conducted to assess the potential of Norwegian agricultural ecosystems to sequester carbon (C) based on the data from some long-term agronomic and land use experiments. The total emission of CO2 in Norway in 1998 was 41.4 million metric ton (MMT), of which agriculture contributed only 0.157 MMT, or <0.4% of the total emissions. With regards to methane (CH4) and nitrous oxide (N2O) gases, however, agricultural activities contributed 32.5% and 51.3% of their respective emissions in Norway. The soil organic carbon (SOC) losses associated with accelerated soil erosion in Norway are estimated at 0.475 MMTC yr−1. Land use changes and soil/crop management practices with potential for SOC sequestration include conservation tillage methods, judicious use of fertilizers and manures, use of crop residues, diverse crop rotations, and erosion control measures. The potential for SOC sequestration is 0.146 MMTC yr−1 for adopting conservation tillage, 0.011–0.035 MMTC yr−1 for crop residue management, 0.026 MMTC yr−1 for judicious use of mineral fertilizer, 0.016–0.135 MMTC yr−1 for manure application, and 0.036 MMTC yr−1 for adopting crop rotations. The overall potential of these practices for SOC sequestration ranges from 0.591 to 1.022 MMTC yr−1 with an average value of 0.806 MMTC yr−1. Of the total potential, 59% is due to adoption of erosion control measures, 5.8% to restoration of peat lands, 21% to conversion to conservation tillage and residue management, and 14% to adoption of improved cropping systems. Enhancing SOC sequestration and improving soil quality, through adoption of judicious land use and improved system of soil and crop management, are prudent strategies for sustainable management of soil, water and environment resources.


carbon sequestration crop rotations fertilizers and manures greenhouse gases land use management practices Norway Scandinavia soil erosion tillage methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batjes, N.H. 1996‘Total carbon and nitrogen in the soils of world’European Journal of Soil Science47151163Google Scholar
  2. Berzseny, Z., Györffy, B 1997‘Effect of crop rotation and fertilization on maize and wheat yield stability in long-term experiments’Agrokéma és Talajtan46377398Google Scholar
  3. Børresen, T., Njøs, A. 1993‘Plowing and rotary cultivation for cereal production in a long-term experiment on a clay soil in southeastern Norway. I. Soil properties’Soil & Tillage Research2897108Google Scholar
  4. Børresen, T., Njøs, A. 1994‘The effect of plowing depth and seedbed preparation on crop yields, weed infestation and soil properties from 1940 to 1990 on a loam soil in southeastern Norway’Soil & Tillage Research322139Google Scholar
  5. Bowman, R.A., Halvorson, A.D. 1998‘Soil chemical changes after nine years of differential N fertilization in a no-till dryland wheat–corn–fallow rotation’Soil Science163241247Google Scholar
  6. Buyanovski, H.A., Brown, J.R., Wagner, G.H. 1997

    ‘Sanborn field; effects of 100 years of cropping on soil parameters influencing crop productivity’

    Paul, E.A.Paustian, E.Elliot, T.Cole, C.V. eds. Soil Organic Matter in Temperate Ecosystems in North America.FL CRC PressBoca Raton205225
    Google Scholar
  7. Buyanovski, H.A., Wagner, G.H. 1998‘Carbon cycling in cultivated land and its global significance’Global Change Biol.4131141CrossRefGoogle Scholar
  8. Christensen, B.T. 1996

    ‘The Askov long-term experiments on animal manure and mineral fertilizers’

    Powlson, D.S.Smith, P.Smith, J.U. eds. Evaluation of Soil Organic Matter: Models Using Existing Datasets, NATO, ASI 138.SpringerHeidelberg301312
    Google Scholar
  9. Copeland, P.J., Crookston, R.K. 1992‘Crop sequence effects on nutrient composition of corn and soybean grown under high fertility’Agronomical J.84503509Google Scholar
  10. Delgado, J.A., Sparks, R.T., Follet, R.F., Sharkoff, J.L., Riggenbach, R.R. 1998

    Use of winter cover crops to conserve soil and water quality in the San Luis Valley of South Central Colorado

    Lal, R. eds. Erosion Impact on Soil Quality.CRC PressBoca Raton, FL
    Google Scholar
  11. De Wit H., Kvindesland S. (1999). ‘Carbon stocks in Norwegian forest soils and effects of forest management on carbon storage’. Rapport fra Skogforskningen Suppl. 14 Nisk, AAs, Norway, pp. 52Google Scholar
  12. Doran, J.W., Elliot, E.T., Paustian, K. 1998‘Soil microbial activity, nitrogen cycling and long-term changes in organic carbon pools as related to fallow tillage managementSoil & Tillage Research49318Google Scholar
  13. Drinkwater, L.E., Wagone, P., Sarrantonio, M. 1998‘Legume-based cropping systems have reduced carbon and nitrogen losses’Nature396262264Google Scholar
  14. Ekeberg, E., Riley, H.C.F. (1995). ‘The long-term fertilizer trials at Møysta SE Norway’. in The Askov Long-term Experiments on Animal Manure and Mineral Fertilizers, 100th Anniversary Workshop, 1994, SP Report No. 29, Vol. 3, pp. 83–97Google Scholar
  15. Ekeberg, E., Riley, H.C.F. 1997Tillage intensity effects on soil properties and crop yields in a long-term trial on morainin loam soil in southeast NorwaySoil & Tillage Research42277293Google Scholar
  16. Esser J.M., Nyborg Å . (1992). Soils in spruce forest- an overview for Norway (in Norwegian). Report 3/92. Norwegian Institute of Land Inventory (NJOS), Ås NorwayGoogle Scholar
  17. Eswaren, H., Berg, E., Reich, P., Kimble, J.M. 1995

    ‘Global soil carbon resources’

    Lal, R.Kimble, J.M.Levine, E.Stewart, B.A. eds. Soils and Global Change.Lewis PublishersBoca Raton FL2743
    Google Scholar
  18. FAO. (1999, 2000). Fertilizer Yearbooks. Rome, ItalyGoogle Scholar
  19. Flach, K.W., Barnwell, T.O.J., Crosson, P. 1997

    ‘Impact of agriculture on atmospheric CO2

    Paul, E.A.Paustian, K.Elliot, E.T.C. eds. Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America.CRC PressBoca Raton FL3133
    Google Scholar
  20. Fullen M.A., Auerswald K. (1998). ‘Effect of grass ley set aside on runoff, erosion and organic matter levels in sandy soil in east Shropshire, U.K. Soil & Tillage Research. 46: 41–49Google Scholar
  21. Houghton, R.A. 1995

    ‘Changes in storage of terrestrial carbon since 1850’

    Lal, R.Kimble, J.M.Levine, E.Stewart, B.A. eds. Soils and Global Change.Lewis PublishersBoca Raton, FL4565
    Google Scholar
  22. Howard, P.J.A., Loveland, P.J., Bradley, R.L., Dry, F.T., Howard, D.M., Howard, D.C. 1995‘The carbon content of soil and its geographical distribution in Great Britain’Soil Use and Management11914Google Scholar
  23. IPCC.2001Third Assessment Report of IPCCCambridge University PressCambridge, UKGoogle Scholar
  24. Izaurralde, R.C., Rosenby, N.J., Lal, R. 2001‘Mitigation of climate change by soil carbon sequestration: Issues of science, monitoring and degraded lands’Advances in Agronomy70175Google Scholar
  25. Jacinthe, P.A., Lal, R., Kimble, J.M. 2001

    ‘Assessing water erosion impacts on soil carbon pools and fluxes’

    Lal, R.Kimble, J.M.Follett, R.F.Stewart, B.A. eds. Assessment Methods for Soil Carbon.Lewis PublishersBoca Raton, FL427449
    Google Scholar
  26. Janzen, H.H., Campbell, C.A., Izaurralde, R.C., Ellert, B.H., Juma, N., McGill, W.B., Zentner, R.P. 1998‘Management effects on soil C storage on the Canadian prairie’Soil & Tillage Research47181195Google Scholar
  27. Jenkinson, D.S. 1990‘The turnover of organic carbon and nitrogen in soil’ Philosophical Transactions of the Royal SocietyLondon B.329361368Google Scholar
  28. Johnston A.E. (1973). ‘The effects of ley and arable cropping systems on the amount of organic matter in the Rothamstead and Woburn Ley–Arable Experiments’. Rothamstead Report for 1972, Part 2, pp. 131–159Google Scholar
  29. Kern, J.S. 1994‘Spatial patterns of soil organic carbon in the contiguous United States’Soil Science Society of America Journal58439455Google Scholar
  30. Krrschens, M., Muller, A. 1996

    ‘The static experiment Bad Lauchstädt, Germany’

    Powlson, D.S.Smith, P.Smith, J.U. eds. Evaluation of Soil Organic Matter: Models Using Existing Datasets, NATO, ASI 138.SpringerHeidelberg369378
    Google Scholar
  31. Kuhlbush, T.A. 1998‘Black carbon and the carbon cycle’Science.28019031904CrossRefGoogle Scholar
  32. Lal, R. 1995‘The role of residue management in sustainable agriculture’Journal of Sustainable Agriculture55178Google Scholar
  33. Lal, R. 1997‘Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment’Soil & Tillage Research4381107Google Scholar
  34. Lal, R. 2001‘World cropland soils as a source or sink for atmospheric carbon’Advances in Agronomy71145191Google Scholar
  35. Lal, R.Kimble, J.M.Levine, E.Stewart, B.A. eds. 1995Soils and Global ChangeLewis PublishersBoca Raton, FL440Google Scholar
  36. Lal, R., Kimble, J.M. 1997‘Conservation tillage for carbon sequestration’Nutrient Cycling in Agroecosystems49243253Google Scholar
  37. Lal, R., Kimble, J.M., Follett, R.F., Cole, C.V. 1998The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse EffectAnn Arbor PressChelsea, MIGoogle Scholar
  38. Malhi, S.S., Nyborg, M., Harpiak, J.T., Heier, K., Flore, N.A. 1997‘Increasing organic C and N under bromegrass with long-term N fertilization’Nutrient Cycling in Agroecosystems49255160Google Scholar
  39. Malmer, N., Wallen, B. 1996‘Peat formation and mass balance in sub-arctic ombrotrophic peatlands around Abisko, northern Scandinavia’Ecological Bulletin (Copenhagen)457992Google Scholar
  40. Maltby, E., Immirzi, C.P. 1992‘The global status of peatlands and their role in carbon cycle’In Friends of the EarthLondon, UK5282Google Scholar
  41. Mele, P.M., Carter, M.R. 1991‘Impact of crop management factors in conservation tillage farming on earthworm density, age structure and species abundance in south-eastern Australia’Soil & Tillage Research50110Google Scholar
  42. Moen, A. 1999National Atlas of Norway: Vegetation, Norwegian Mapping AuthorityHønefossNorwayGoogle Scholar
  43. Nilsson, L.G. 1986‘Data of yield and soil analysis in the long-term soil fertility experiments’Journal of the Royal Swedish Academy of Agriculture and Forestry.183270Google Scholar
  44. Oldeman, L.R. 1994

    ‘The global extent of soil degradation’

    Greenland, D.J.Szabolcs, I. eds. Soil Resilience and Sustainable Land Use.CAB InternationalWallingford, UK99118
    Google Scholar
  45. Paul, E.A.Paustian, K.Elliot, E.T.Cole, C.V. eds. 1997Soil Organic Matter in Temperate AgroecosystemsCRC PressBoca Raton, FL413Google Scholar
  46. Paustian, K., Parton, W.J., Persson, J. 1992‘Modelling soil organic matter in organic amended and nitrogen fertilized long-term plots’Soil Science Society of America Journal56476488Google Scholar
  47. Rasmussen, P.E., Albrecht, S.L. 1998

    ‘Crop management effect on organic carbon in semi-arid Pacific Northwest sols’

    Lal, R.Kimble, J.M.Follett, R.F.Stewart, B.A. eds. Management of C Sequestration in Soil.CRC PressBoca Raton, FL209219
    Google Scholar
  48. Reicosky, D.C. 1998

    ‘Tillage methods and carbon dioxide loss: Fall versus spring plowing’

    Lal, R.Kimble, J.M.Follett, R.F.Stewart, B.A. eds. Management of Carbon Sequestration in Soil.CRC PressBoca Raton, FL90111
    Google Scholar
  49. Roulet, N.T. 2000Peatlands, carbon storage, greenhouse gases, and Kyoto Protocol: Prospects and significance for CanadaWetlands.20605615Google Scholar
  50. Schlesinger, W.H. 1997Biogeochemistry, An Analysis of Global ChangeAcademic PressNew York588Google Scholar
  51. Schjonning, P., Christensen, B.T., Christensen, B. 1994‘Physical and chemical properties of a sandy loam receiving animal manure, mineral fertilizer or no fertilizer for 90 years’European Journal of Soil Science45257268Google Scholar
  52. Smith, P., Powlson, S.D.S., Glendining, M.J., Smith, J.U. 1997‘Potential for carbon sequestration in European soils: Preliminary estimates for five scenarios using results from long-term experiments’Global Change Biology36779CrossRefGoogle Scholar
  53. Sombroek, W.G., Nachtergale, F.O., Hebel, A. 1993‘Amounts, dynamics and sequestering of carbon in tropical and subtropical soils’Ambio22417426Google Scholar
  54. SSB (Central Statistical Bureau of Norway). (2000). Yearbook, OsloGoogle Scholar
  55. Tiberg E. ed. (1998). Nordic Reference Soils. TemaNord 1998: 537. Nordic Council of Ministers, Copenhagen, DenmarkGoogle Scholar
  56. Tolonen, K., Turunen, J. 1995‘Carbon accumulation in mires in Finland’. in Northern Peatlands in Global Climate ChangeEditaHelsinki, FinlandGoogle Scholar
  57. Tomter, S.M. 1996Statistics of Forest Conditions and Resources in NorwayFollotrykkÅs, NorwayGoogle Scholar
  58. Torbert, H.A., Potter, K.N., Morrison, J.E.J. 1997Tillage intensity and fertility level effects on N and C cycling in a VertisolCommunications in Soil Science Plant and Analysis28699710Google Scholar
  59. Uhlen, G. 1999Long-term effects of fertilizers, manures, straw and crop rotation on total C in soilActa Agricultura Scandinavia41119127Google Scholar
  60. Uhlen, G., Tveitnes, S. 1995‘Effects of long-term crop rotation, fertilizers, farm manure and straw on soil productivity’Norwegian Journal of Agricultural Science9143161Google Scholar
  61. Van Dijk, H. 1982

    ‘Survey of Dutch soil organic research with regard to humification and degradation rates in arable land’

    Boels, D.D.Davis, B.Johnston, A.E. eds. Land Use Seminar on Land Degradation.BalkemaRotterdam133143
    Google Scholar
  62. West, T.O., Marland, G. 2002‘A synthesis of carbon sequestration, carbon emissions and net carbon flux in agriculture: Comparing tillage practice in the United States’Agriculture, Ecosystems and Environment91217232Google Scholar
  63. West, T.O., Post, W.M. 2002‘Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis’Soil Science Society of America Journal.6619301946Google Scholar
  64. Witter, E., Mårtensson, A.M., Garcia, F.V. 1993‘Size of the microbial mass in a long-term field experiment as affected by different N fertilizers and organic manures’Soil Biology & Biochemistry28659669Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesNorwegian University of Life SciencesÅsNorway
  2. 2.School of Natural ResourcesOhio State UniversityColumbusUSA

Personalised recommendations