Skip to main content
Log in

Computer-Aided Crop Yield Forecasting Techniques - Systematic Review Highlighting the Application of AI

  • Review
  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Accurate yield forecasts can assist decision-makers in developing plans to bridge the food demand gap in the context of changing climatic conditions. Literature shows a variety of methodologies for forecasting crop yield; however, it is difficult to find a general methodology/model or a better one among the available literature. This review provides insight into the yield forecasting techniques available for agricultural crops, highlighting that most of the work has focused on wheat and rice crops. Most studies have mainly concentrated in Asia, Europe, the USA, and Africa. Of all the 54 selected publications, 70% of the papers have developed models by AI techniques. The statistical indices commonly used to compare the developed models are RMSE and correlation coefficient. From the standpoint of model performance and reliability of outcomes, the hybrid model (integrated approach of ML, namely, CNN/XGBoost and CSM and other crop models) has improved overall efficiency compared to standalone models. The AI tools can improve the accuracy of simulations by considering the effects of variables and processes that are not simulated in crop models. A range of input datasets, including meteorological parameters, crop characteristics, and hydro-geological properties, have been used for the model development. The results demonstrate that maximum temperature is the influencing parameter in model development. This study also demands the inclusion of local/ regional variables as inputs for such modeling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The data sources are properly cited in the manuscript.

Code Availability

Not applicable.

References

  1. United Nations Department of Economic and Social Affairs, Population Division. (2022). World Population Prospects 2022: Summary of results. UN DESA/POP/2022/TR/NO. 3.

  2. Arumugam, S., Ozkan, B., Aravind, J., & Mockaisamy, P. (2021). Impact of COVID-19 pandemic on global agriculture, livelihoods and food system. Journal of Agricultural Sciences (Tarim Bilimleri Tergisi), 27(3), 239–246.

    Google Scholar 

  3. Habanyati, E. J., Paramasivam, S., Seethapathy, P., Jayaraman, A., & Kedanhoth, R. (2022). Impact of COVID-19 on the agriculture sector: Survey analysis of farmer responses from Kerala and Tamil Nadu States in India. Agronomy, 12(2), 503.

    Article  CAS  Google Scholar 

  4. Jain, R. C., & Agarwal, R. (1992). Probability model for crop yield forecasting. Biometrical Journal, 34(4), 501–511.

    Article  Google Scholar 

  5. Jain, R. C., Agarwal, R., & Singh, K. N. (1992). A within year growth model for crop yield forecasting. Biometrical Journal, 34(7), 789–799.

    Article  Google Scholar 

  6. Cantelaube, P., & Terres, J.-M. (2005). Seasonal weather forecasts for crop yield modelling in Europe. Tellus A: Dynamic Meteorology and Oceanography, 57(3), 476–487. https://doi.org/10.3402/tellusa.v57i3.14669

    Article  Google Scholar 

  7. Ribeiro, H., Cunha, M., & Abreu, I. (2008). Quantitative forecasting of olive yield in Northern Portugal using a bioclimatic model. Aeribiologia, 24, 141–150. https://doi.org/10.1007/s10453-008-9094-2

    Article  Google Scholar 

  8. Manatsa, D., Nyakudya, I. W., Mukwada, G., & Matsikwa, H. (2011). Maize yield forecasting for Zimbabwe farming sectors using satellite rainfall estimates. Natural Hazards, 59, 447–463.

    Article  Google Scholar 

  9. Singh, A., Nagar, V., Tanwar, N., Shahi, U. P., & Bhan, S. C. (2022). Use of statistical models in yield forecasting of wheat, mustard and potato crop in Western districts of Uttar Pradesh, India. International Journal of Environment and Climate Change, 12(3), 66–72.

    Google Scholar 

  10. Priya, S. R. K., Balambiga, R. K., Mishra, P., & Das, S. S. (2023). Sugarcane yield forecast using weather-based discriminant analysis. Smart Agricultural Technology, 3, 100076, 10.1016/j.atech.2022.100076

    Article  Google Scholar 

  11. Jayakumar, M., Rajavel, M., & Surendran, U. (2016). Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India. International Journal of Biometeorology, 60, 1943–1952.

    Article  CAS  Google Scholar 

  12. Manivasagam, V. S., & Rozenstein, O. (2020). Practices for upscaling crop simulation models from field scale to large regions. Computers and Electronics in Agriculture, 175, 105554.

    Article  Google Scholar 

  13. Gommes, R. (1998). List of variables used for crop modelling purposes by the Space Applications Institute/MARS. In D. Rijks, J. M. Terres, & P. Vossen (Eds.), (pp. 313–326).

  14. Hatfield, J. R. (1983). Remote sensing estimators of potential and actual crop yield. Remote Sensing and Environment, 13 (4), 301–311.

    Article  Google Scholar 

  15. Horie, T., Yajima, M., & Nakagawa, H. (1992). Yield forecasting. Agricultural Systems, 40 (1-3), 211–236.

    Article  Google Scholar 

  16. Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield assessment from remote sensing. Photogrammetric Engineering & Remote Sensing, 69, 665–674.

    Article  Google Scholar 

  17. Benedetti, R., & Rossini, P. (1993). On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sensing and Environment, 45, 311–326.

    Article  Google Scholar 

  18. Kogan, F., Salazar, L., & Roytman, L. (2012). Forecasting crop production using satellite-based vegetation health indices in Kansas, USA. International Journal of Remote Sensing, 33, 2798–2814.

    Article  Google Scholar 

  19. Maselli, F., & Rembold, F. (2001). Analysis of GAC NDVI data for cropland identification and yield forecasting in Mediterranean African countries. Photogrammetric Engineering & Remote Sensing, 67, 593–602.

    Google Scholar 

  20. Smith, R. C., Adams, J., Stephens, D. J., & Hick, P. T. (1995). Forecasting wheat yield in a Mediterranean-type environment from the NOAA Satellite. Australian Journal of Agricultural Research, 46, 113–125.

    Article  Google Scholar 

  21. Tucker, C. J., Townshend, J. R. G., & Goef, T. E. (1985). African land cover classification using satellite data. Science, 227, 110.

    Article  Google Scholar 

  22. Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114(6), 1312–1323.

    Article  Google Scholar 

  23. Ren, J., Chen, Z., Zhou, Q., & Tang, H. (2008). Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. International Journal of Applied Earth Observation and Geoinformation., 10(4), 403–413.

    Article  Google Scholar 

  24. Kogan, F., Kussul, N., Adamenko, T., Skakun, S., Kravchenko, O., Kryvobok, O., Shelestov, A., Kolotii, A., Kussul, O., & Lavrenyuk, A. (2013). Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models. International Journal of Applied Earth Observation and Geoinformation, 23, 192–203.

    Article  Google Scholar 

  25. Idso, S. B., Jackson, R. D., & Reginato, R. J. (1977). Remote sensing of crop yields. Science, 196, 19–25.

    Article  CAS  Google Scholar 

  26. Rudorff, B. F. T., & Batista, G. T. (1990). Yield estimation of sugarcane based on agrometeorological-spectral models. Remote Sensing and Environment, 33, 183–192.

    Article  Google Scholar 

  27. Daughtry, C. S. T., Gallo, K. P., Goward, S. N., Prince, S. D., & Kustas, W. P. (1992). Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies. Remote Sensing and Environment, 39, 141–152.

    Article  Google Scholar 

  28. Gower, S. T., Kucharik, C. J., & Norman, J. M. (1999). Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing and Environment, 70, 29–51.

    Article  Google Scholar 

  29. Kumar, M., & Monteith, J. L. (1981). Remote sensing of crop growth. In H. Smith (Ed.), Plants and daylight spectrum (pp. 133–144). Academic Press.

    Google Scholar 

  30. Price, J. C., & Bausch, W. C. (1995). Leaf Area Index estimation from visible and near-infrared reflectance data. Remote Sensing Environment, 52, 55–65.

    Article  Google Scholar 

  31. Idso, S. B., Hatfield, J. L., Reginato, R. J., & Jackson, R. D. (1978). Wheat yield estimation by albedo measurement. Remote Sensing and Environment, 7, 273–276.

    Article  Google Scholar 

  32. Bastiaanssen, W. G. M., & Ali, S. (2003). A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems and Environment, 94, 321–340.

    Article  Google Scholar 

  33. Kastens, J. H., Kastens, T. L., Kastens, D. L. A., Price, K. P., Martinko, E. A., & Lee, R.-Y. (2005). Image masking for crop yield forecasting using AVHRR NDVI time series imagery. Remote Sensing of Environment, 99, 341–356.

    Article  Google Scholar 

  34. de Wit, A. J. W., & van Diepen, C. A. (2008). Crop growth modelling and crop yield forecasting using satellite-derived meteorological inputs. International Journal of Applied Earth Observation and Geoinformation, 10, 414–425.

    Article  Google Scholar 

  35. Mkhabela, M. S., Bullock, P., Raj, S., Wang, S., & Yang, Y. (2011). Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agricultural and Forest Meteorology, 151, 385–393.

    Article  Google Scholar 

  36. Johnson, M. D., Hsieh, W. W., Cannon, A. J., Davidson, A., & Bedard, F. (2016). Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agricultural and Forest Meteorology, 218–219, 74–84.

    Article  Google Scholar 

  37. Sakamoto, T., Gitelson, A. A., & Arkebauer, T. J. (2014). Near real-time prediction of US corn yields based on time-series MODIS data. Remote Sensing of Environment, 147, 219–231.

    Article  Google Scholar 

  38. Lopez-Lozano, R., Duveiller, G., Seguini, L., Meroni, M., Garcia-Condado, S., Hooker, J., Leo, O., & Baruth, B. (2015). Towards regional grain yield forecasting with 1 km-resolution EO biophysical products: Strengths and limitations at pan-European level. Agricultural and Forest Meteorology, 206, 12–32.

    Article  Google Scholar 

  39. Manivasagam, V. S., Sadeh, Y., Kaplan, G., Bonfil, D. J., & Rozenstein, O. (2021). Studying the feasibility of assimilating Sentinel-2 and PlanetScope imagery into SAFY crop model to predict within field wheat yield. Remote Sensing, 13(12), 2395.

    Article  Google Scholar 

  40. Al-Adhaileh, M. H., & Aldhyani, T. H. H. (2022). Artificial intelligence framework for modeling and predicting crop yield to enhance food security in Saudi Arabia. PeerJ Computer Science, 8, e1104.

    Article  Google Scholar 

  41. Veenadhari, S., Misra, B., & Singh, C.D. (2014). Machine learning approach for forecasting crop yield based on climatic parameters. International Conference on Computer Communication and Informatics, 1-5. 10.1109/ICCCI.2014.6921718.

  42. Medar, R. A., Rajpurohit, V. S., & Ambedkar, A. M. (2019). Sugarcane crop yieldnforecasting using supervised machine learning. International Journal of Systems and Applications, 8, 11–20.

    Google Scholar 

  43. Shahhosseini, M., Hu, G., & Archontoulis, S. V. (2020). Forecasting corn yield with machine learning ensembles. Frontiers in Plant Science, 11, 1120. https://doi.org/10.3389/fpls.2020.01120

    Article  Google Scholar 

  44. Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., & Athanasiadis, I. N. (2021). Machine learning for large-scale crop yield forecasting. Agricultural Systems, 187, 103016.

    Article  Google Scholar 

  45. Paudel, D., Boogaard, H., de Wit, A., van der Velde, M., Claverie, M., Nisini, L., Janssen, S., Osinga, S., & Athanasiadis, I. N. (2022). Machine learning for regional crop yield forecasting in Europe. Field Crops Research, 276, 108377.

    Article  Google Scholar 

  46. Nihar, A., Patel, N. R., & Danodia, A. (2022). Machine learning based regional yield forecasting for sugarcane crop in Uttar Pradesh, India. Journal of the Indian Society of Remote Sensing, 50(8), 1519–1530.

    Article  Google Scholar 

  47. Raorane, N. V., Sawant, T. A., Sawant, P. V., & Nalawade, S. (2022). Crop yield forecasting using machine learning. Iconic Research Engineering Journals, 5(10), 2456–8880.

    Google Scholar 

  48. Sharma, P. K., Kumar, P., Srivastava, H. S., & Sivasankar, T. (2022). Assessing the potentials of multi-temporal sentinel-1 SAR data for paddy yield forecasting using artificial neural network. Journal of the Indian Society of Remote Sensing, 50(5), 895–907.

    Article  Google Scholar 

  49. Kandala, V.M., & Pranjeshu. (2002). Fuzzy regression methodology for crop yield forecasting using remotely sensed data. Journal of the Indian Society of Remote Sensing 30(4).

  50. Suresh, K. K., & Priya, S. R. K. (2011). Forecasting sugarcane yield of Tamil Nadu using ARIMA models. Sugar Tech, 13(1), 23–26. https://doi.org/10.1007/s12355-011-0071-7

    Article  Google Scholar 

  51. Guo, W. W., & Xue, H. (2014). Crop yield forecasting using artificial neural networks: A comparison between spatial and temporal models. Mathematical Problems in Engineering, ID 857865, 7.  https://doi.org/10.1155/2014/857865

    Article  Google Scholar 

  52. Khaki, S., Wang, L., & Archontoulis, S. V. (2020). A CNN-RNN framework for crop yield prediction. Frontiers in Plant Science, 10, 1750, doi: 10.3389/fpls.2019.01750. https://doi.org/10.3389/fpls.2019.01750

    Article  Google Scholar 

  53. Jena, P. R., Majhi, B., Kalli, R., & Majhi, R. (2022). Prediction of crop yield using climate variables in the south-western province of India: A functional artificial neural network modeling (FLANN) approach. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02517-x

    Article  Google Scholar 

  54. Oliveira, I., Cunha, R.L.F., Silva, B., Netto, M.A.S. (2018). A scalable machine learning system for pre-season agriculture yield forecast. 14th IEEE eScience. arXiv:1806.09244v2

  55. Togninalli, M., Wang, X., Kucera, T., Shrestha, S., Juliana, P., Mondal, S., Pinto, F., Govindan, V., Crespo-Herrera, L., Huerta-Espino, J., Singh, R. P., Borgwardt, K., & Poland, J. (2023). Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics. Bioinformatics, 39(6), btad336. https://doi.org/10.1093/bioinformatics/btad336

    Article  CAS  Google Scholar 

  56. Tong, H., & Nikoloski, Z. (2021). Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data. Journal of Plant Physiology, 257, 153354. https://doi.org/10.1016/j.jplph.2020.153354

    Article  CAS  Google Scholar 

  57. Sirsat, M. S., Oblessuc, P. R., & Ramiro, R. S. (2022). Genomic prediction of wheat grain yield using machine learning. Agriculture, 12, 1406. https://doi.org/10.3390/agriculture12091406

    Article  Google Scholar 

  58. Rai, K. K. (2022). Integrating speed breeding with artificial intelligence for developing climate-smart crops. Molecular Biology Reports, 49, 11385–11402. https://doi.org/10.1007/s11033-022-07769-4

    Article  CAS  Google Scholar 

  59. Wang, K., Abid, M. A., Rasheed, A., Crossa, J., Hearne, S., & Li, H. (2023). DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Molecular Plant, 16(1), 279–293. https://doi.org/10.1016/j.molp.2022.11.004

    Article  CAS  Google Scholar 

  60. Wang, X., Zeng, H., Lin, L., Huang, Y., Lin, H., & Que, Y. (2023). Deep learning-empowered crop breeding: intelligent, efficient and promising. Frontiers in Plant Science, 14, 1260089. https://doi.org/10.3389/fpls.2023.1260089

    Article  Google Scholar 

  61. Feng, W., Gao, P., & Wang, X. (2024). AI breeder: Genomic predictions for crop breeding. New Crops, 1, 100010. https://doi.org/10.1016/j.ncrops.2023.12.005

    Article  Google Scholar 

  62. Li, H., Li, X., Zhang, P., Feng, Y., Mi, J., Gao, S., Sheng, L., Ali, M., Yang, Z., Li, L., Fang, W., Wang, W., Qian, Q., Gu, F., & Zhou, W. (2024). Smart Breeding Platform: A web-based tool for high-throughput population genetics, phenomics, and genomic selection. Molecular Plant. https://doi.org/10.1016/j.molp.2024.03.002

    Article  Google Scholar 

  63. Jubair, S., & Domaratzki, M. (2023). Crop genomic selection with deep learning and environmental data: A survey. Frontiers in Artificial Intelligence, 5, 1040295. https://doi.org/10.3389/frai.2022.1040295

    Article  Google Scholar 

  64. Van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709, 10.1016/j.compag.2020.105709.

    Article  Google Scholar 

  65. Oikonomidis, A., Catal, C., & Kassahun, A. (2022). Deep learning for crop yield prediction: A systematic literature review. New Zealand Journal of Crop and Horticultural Science. https://doi.org/10.1080/01140671.2022.2032213

    Article  Google Scholar 

  66. Meshram, V., Patil, K., Meshram, V., Hanchate, D., & Ramkteke, S. D. (2021). Machine learning in agriculture domain: A state of the art. Artificial Intelligence in the Life Science, 1, 100010.

    Article  CAS  Google Scholar 

  67. Rashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., & Khan, N. (2021). A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm yield prediction. IEEE, 9, 63406–63439.

    Google Scholar 

  68. Vidhya, S., Vishwashankar, T. J., Akshaya, K., Premdas, A., & Rohith, R. (2019). Smart crop protection using deep learning approach. International Journal of Innovative Technology and Exploring Engineering, 8, 301–305.

    Google Scholar 

  69. Agarwal, S., & Tarar, S. (2021). A hybrid approach for crop yield prediction using machine learning and deep learning algorithms. Journal of Physics: Conference Series, 1714, 012012.

    Google Scholar 

  70. Devi, M., Kumar, J., Malik, D. P., & Mishra, P. (2021). Forecasting of wheat production in Hayana using hybrid time series model. Journal of Agriculture and Food Research, 5, 100175.

    Article  Google Scholar 

  71. Lingwal, S., Bhatia, K. K., & Singh, M. (2022). A novel machine learning approach for rice yield estimation. Journal of Experimental & Thearetical Artificial Intelligence. https://doi.org/10.1080/0952813X.2022.2062458

    Article  Google Scholar 

  72. Shahhosseinin, M., Hu, G., Huber, I., & Archontoulis, S. V. (2021). Coupling machine learning and crop modelling improves crop yield prediction in the US corn belt. Scientific Reports, 11, 1606.

    Article  Google Scholar 

  73. Pushpalatha, R., & Byju, G. (2020). Is Cassava a climate smart crop? A review in the context of bridging future food demand gap. Tropical Plant Biology, 13, 201–211.

    Article  CAS  Google Scholar 

  74. Gandhi, N., & Armstrong, L.J. (2016). Rice crop yield forecasting of tropical wet and dry climatic zone of India using data mining techniques. IEEE International Conference on Advances in Computer Applications. 978–1–5090–3770–4/16.

  75. Cheng, H., Damerow, L., Sun, Y., & Blanke, M. (2017). Early yield prediction using image analysis of apple fruit and tree canopyfeatures with neural networks. Journal of Imaging, 3(1), 6. https://doi.org/10.3390/jimaging3010006

    Article  Google Scholar 

  76. Anitha, P., & Chakravarthy, T. (2018). Agricultural Crop Yield Prediction using Artificial Neural Network with Feed Forward Algorithm. International Journal of Computer Sciences and Engineering, 6(11), 178–181. https://doi.org/10.26438/ijcse/v6i11.178181

    Article  Google Scholar 

  77. Taherei-Ghazvinei, P., Hassanpour-Darvishi, H., Mosavi, A., Yusof, K. W., Alizamir, M., Shamshirband, S., & Chau, K. (2018). Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Engineering Applications of Computational Fluid Mechanics, 12(1), 738–749. https://doi.org/10.1080/19942060.2018.1526119

    Article  Google Scholar 

  78. Ahmad, I., Saeed, U., Fahad, M., Ullah, A., Habib-ur-Rahman, M., Ahmad, A., & Judge, J. (2018). Yield forecasting of spring maize using remote sensing and crop modeling in Faisalabad-Punjab Pakistan. Journal of the Indian Society of Remote Sensing, 46(10), 1701–1711. https://doi.org/10.1007/s12524-018-0825-8

    Article  Google Scholar 

  79. Shah, A., Dubey, A., Hemnani, V., Gala, D., & Kalbande, D. R. (2018). Smart Farming System: Crop Yield Prediction Using Regression Techniques (pp. 49–56). Singapore: Springer. https://doi.org/10.1007/978-981-10-8339-6_6

    Chapter  Google Scholar 

  80. Crane-Droesch, A. (2018). Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 13(11), 114003. https://doi.org/10.1088/1748-9326/aae159

    Article  Google Scholar 

  81. Haghverdi, A., Washington-Allen, R. A., & Leib, B. G. (2018). Prediction of cotton lint yield from phenology of crop indices using artificial neural networks. Computers and Electronics in Agriculture, 152, 186–197. https://doi.org/10.1016/j.compag.2018.07.021

    Article  Google Scholar 

  82. Filippi, P., Jones, E. J., Wimalathunge, N. S., Somarathna, P. D. S. N., Pozza, L. E., Ugbaje, S. U., & Bishop, T. F. A. (2019). An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precision Agriculture. https://doi.org/10.1007/s11119-018-09628-4

    Article  Google Scholar 

  83. Nigam, A., Garg, S., Agrawal, A., & Agrawal, P. (2019). Crop yield prediction using machine learning algorithms. Fifth International Conference on Image Information Processing, ICIIP. https://doi.org/10.1109/ICIIP47207.2019.8985951

    Article  Google Scholar 

  84. Kim, K. H., Shim, P. S., & Shin, S. (2019). An alternative bilinear interpolation method between spherical grids. Atmosphere. https://doi.org/10.3390/atmos10030123

    Article  Google Scholar 

  85. Kavita, M., & Mathur, P. (2020). Crop Yield Estimation in India Using Machine Learning. 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA). https://doi.org/10.1109/ICCCA49541.2020.9250915

    Article  Google Scholar 

  86. Elavarasan, D., & Vincent, P. D. (2020). Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications. IEEE Access, 8, 86886–86901.

    Article  Google Scholar 

  87. Abbas, F., Afzaal, H., Farooque, A. A., & Tang, S. (2020). Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy, 10(7), 1046.

    Article  Google Scholar 

  88. Mateo-Sanchis, A., Piles, M., Amorós-López, J., Muñoz-Marí, J., Adsuara, J. E., Moreno-Martínez, A., & Camps-Valls, G. (2021). Learning main drivers of crop progress and failure in Europe with interpretable machine learning. International Journal of Applied Earth Observation and Geoinformation, 104, 102574. https://doi.org/10.1016/j.jag.2021.102574. ISSN 1569-8432.

    Article  Google Scholar 

  89. Prasad, N. R., Patel, R., & Abhishek, D. (2020). Crop yield prediction in cotton for regional level using random forest approach. Spatial Information Research. https://doi.org/10.1007/s41324-020-00346-6

    Article  Google Scholar 

  90. Liu, Q., Yang, M., Mohammadi, K., Song, D., Bi, J., & Wang, G. (2022). Machine learning crop yield models based on meteorological features and comparison with a process-based model. Artificial Intelligence for the Earth Systems, 1(4), e220002. https://doi.org/10.1175/AIESD-22-0002.1

    Article  Google Scholar 

  91. Joshua, V., Priyadharson, S. M., & Kannadasan, R. (2021). Exploration of Machine Learning Approaches for Paddy Yield Prediction in Eastern Part of Tamilnadu. Agronomy, 11, 2068. https://doi.org/10.3390/agronomy11102068

    Article  Google Scholar 

  92. Batool, D., Shahbaz, M., Shahzad Asif, H., Shaukat, K., Alam, T. M., Hameed, I. A., Ramzan, Z., Waheed, A., Aljuaid, H., & Luo, S. (2022). A Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learning. Plants, 11, 1925. https://doi.org/10.3390/plants11151925

    Article  Google Scholar 

  93. Cao, J., Gao, J., Nikafshan Rad, H., Mohammed, A. S., Hasanipanah, M., & Zhou, J. A. (2022). Novel systematic and evolved approach based on XGBoost-firefly algorithm to predict Young’s modulus and unconfined compressive strength of rock. Engineering with Computers, 38, 3829–3845.

    Google Scholar 

  94. Lischeid, M., Webber, H., Sommer, M., Nendel, C., & Ewert, F. (2022). Machine learning in crop yield modelling: A powerful tool, but no surrogate for science. Agricultural and Forest Meteorology, 312, 108698. https://doi.org/10.1016/j.agrformet.2021.108698. ISSN 0168-1923.

    Article  Google Scholar 

  95. Aworka, R., Cedric, L. S., Adoni, W. Y. H., Zoueu, J. T., Mutombo, F. K., Kimpolo, C. L. M., Nahhal, T., & Krichen, M. (2022). Agricultural decision system based on advanced machine learning models for yield prediction: Case of East African countries. Smart Agricultural Technology, 2, 100048. https://doi.org/10.1016/j.atech.2022.100048. ISSN 2772-3755.

    Article  Google Scholar 

  96. Cedric, L. S., Adoni, W. Y. H., Aworka, R., Zoueu, J. T., Mutombo, F. K., Krichen, M., & Kimpolo, C. L. M. (2022). Crops yield prediction based on machine learning models: Case of West African countries. Smart Agricultural Technology, 2, 100049. https://doi.org/10.1016/j.atech.2022.100049. ISSN 2772-3755.

    Article  Google Scholar 

  97. Shahhosseini, M., Hu, G., Khaki, S., & Archontoulis, S. V. (2021). Corn Yield Prediction With Ensemble CNN-DNN. Frontiers in Plant Science, 12, 709008. https://doi.org/10.3389/fpls.2021.709008

    Article  Google Scholar 

Download references

Acknowledgements

We thank the School for Sustainable Futures, Amrita Vishwa Vidyapeetham, Amritapuri for the full support. We are also thankful to the unknown reviewers for their suggestions which improved the content of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Raji Pushpalatha and Dr. Thendiyath Roshni designed and performed the work and manuscript. Dr. Govindan Kutty sorted out the different models among the collected literature and reviewed them. Dr. G. Byju critically reviewed and modified the manuscript.

Corresponding author

Correspondence to Raji Pushpalatha.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushpalatha, R., Roshni, T., Gangadharan, B. et al. Computer-Aided Crop Yield Forecasting Techniques - Systematic Review Highlighting the Application of AI. Environ Model Assess (2024). https://doi.org/10.1007/s10666-024-09978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10666-024-09978-6

Keywords

Navigation