Skip to main content
Log in

Assessment of Habitat Suitability and Potential Corridors for Bengal Tiger (Panthera tigris tigris) in Valmiki Tiger Reserve, India, Using MaxEnt Model and Least-Cost Modeling Approach

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Tigers have seen significant population losses due to the degradation and fragmentation of their habitat ranges worldwide. Thus, habitat suitability assessment of such predators is essential for restoring their numbers and devising strategies for their protection. This paper aims to assess the habitat suitability and potential corridors for Bengal tiger species (Panthera tigris tigris) in the Valmiki Tiger Reserve (VTR) located in the West Champaran district of Bihar, India. Nine suitability conditioning factors (tree cover, prey richness, drainage density, vegetation types, elevation, slope, aspect, temperature, and rainfall) and seven threatening factors (forest fragmentation, land use land cover, distance from roads, railway tracks, settlement, range offices, and forest fire points) were selected for emphasizing species-environment association in VTR. The spatial layers of all the factors and presence location data of tigers were integrated into the MaxEnt model to prepare a habitat suitability map. The model was validated utilizing the receiver operating characteristic (ROC) curve (0.822), which was found in good agreement. The least-cost corridor modeling based on surface resistance was utilized to identify the cost-effective pathways and prioritize dispersal routes and potential corridors for this species. The findings revealed that the largest area of the Reserve was found to be moderately suitable (41.92%), followed by low suitable (22.98%), highly suitable (19.34%), and unsuitable areas (15.76%). The potential causes for low suitability and unsuitable habitats included human-induced disturbances, especially in the buffer zone of VTR. The core habitats and their connectivity, particularly in the eastern and central parts of the Reserve, facilitated the dispersal of the Bengal tiger population. This study offers significant insights for identifying crucial habitats and establishing corridors between them. The study calls for suitable measures for restricting human encroachment and increasing predator movements from the adjacent corridors of the protected reserves of Nepal and Uttar Pradesh. The findings may help forest managers and stakeholders for suggesting suitable conservation and restoration practices as well as regulating strategies for the self-sustenance of reintroduced tigers in the Reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

All the data will be available upon the reasonable request to the corresponding author.

References

  1. WWF. (2020). Enhancing the understanding, establishment and operation of transboundary conservation landscapes. WWF Tigers Alive, WWF Belgium, Wildteam UK. Retrieved December 23, 2021, from https://wwfeu.awsassets.panda.org/downloads/transboundary_conservation_report_web.pdf

  2. Deb, J. C., Phinn, S., Butt, N., & McAlpine, C. A. (2019). Adaptive management and planning for the conservation of four threatened large Asian mammals in a changing climate. Mitigation and Adaptation Strategies for Global Change, 24(2), 259–280. https://doi.org/10.1007/s11027-018-9810-3

    Article  Google Scholar 

  3. Tang, T., Li, J., Sun, H., & Deng, C. (2021). Priority areas identified through spatial habitat suitability index and network analysis: Wild boar populations as proxies for tigers in and around the Hupingshan and Houhe National Nature Reserves. Science of the Total Environment, 774, 145067. https://doi.org/10.1016/j.scitotenv.2021.145067

    Article  CAS  Google Scholar 

  4. Rather, T. A., Kumar, S., & Khan, J. A. (2020). Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm. Scientific Reports, 10(1), 1–19. https://doi.org/10.1038/s41598-020-68167-z

    Article  CAS  Google Scholar 

  5. Tian, Y., Wu, J., Wang, T., & Ge, J. (2014). Climate change and landscape fragmentation jeopardize the population viability of the Siberian tiger (Panthera tigris altaica). Landscape Ecology, 29(4), 621–637. https://doi.org/10.1007/s10980-014-0009-z

    Article  CAS  Google Scholar 

  6. WII. (2016). Eco-friendly measures to mitigate impacts of linear infrastructure on wildlife. Wildlife Institute of India, Dehradun, India. https://moef.gov.in/wp-content/uploads/2019/07/eco_friendly_measures_mitigate_impacts_linear_infra_wildlife_compressed.pdf

  7. WWF-USA. (2020). Doubling Wild Tigers - Annual Report. WWF Tigers Alive, WWF-USA. https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/Asien/WWF-Report-Doubling-Tigers-2020.pdf

  8. Global Tiger Forum. (2019). Status of tiger habitats in high altitude ecosystems of Bhutan, India and Nepal (situation analysis). Global Tiger Forum. https://globaltigerforum.org/wp-content/uploads/2019/09/Final-HAT-VERSION-28-AUGUST-20191.pdf

  9. IUCN. (2022). The future of Panthera tigris in Thailand and globally. International Union for Conservation of Nature. Retrieved May 26, 2023, from https://www.iucn.org/story/202208/future-panthera-tigris-thailand-and-globally

  10. Jhala, Y. V., Qureshi, Q., & Nayak, A. K. (2019). Status of tigers, co-predators and prey in India- 2018. Summary report. National Tiger Conservation Authority, Government of India, New Delhi & Wildlife Institute of India, Dehradun. TR No./2019/05. Retrieved December 12, 2021, from https://docslib.org/doc/1348499/status-oftigers-in-india-2018

  11. Qureshi, Q., Saini, S., Basu, P., Gopal, R., Raza, R., & Jhala, Y. (2014). Connecting tiger populations for long-term conservation. National Tiger Conservation Authority and Wildlife Institute of India, Dehradun. TR2014–TR2002. Retrieved December 23, 2021, from https://wii.gov.in/images/images/documents/conn_tiger_preface_toc.pdf

  12. IUCN. (2021). Impact results from projects implemented between 2015 and 2021, Integrated Tiger Habitat conservation programme. Retrieved January 4, 2022, from https://iucnsos.org/wp-content/uploads/2021/07/ITHCP-Phase-I-Impact-Report.pdf

  13. World Atlas. (2022). Where do tigers live?. Retrieved January 4, 2022, from https://www.worldatlas.com/articles/where-do-tigers-live.html

  14. Long, Z., Gu, J., Jiang, G., Holyoak, M., Wang, G., Bao, H., Liu, P., Zhang, M., & Ma, J. (2021). Spatial conservation prioritization for the Amur tiger in Northeast China. Ecosphere, 12(9), e03758. https://doi.org/10.1002/ecs2.3758

    Article  Google Scholar 

  15. Chanchani, P., Lamichhane, B. R., Malla, S., Maurya, K., Bista, A., Warrier, R., Nair, S., Almeida, M., Ravi, R., Sharma, R., Dhakal, M., Yadav, S. P., Thapa, M., Jnawali, S. R., Pradhan, N. M. B., Subedi, N., Thapa, G. J., Yadav, H., Jhala, Y. V., et al. (2014). Tigers of the Transboundary Terai Arc Landscape: Status, distribution and movement in the Terai of India and Nepal. National Tiger Conservation Authority, Government of India, and Department of National Park and Wildlife Conservation, Government of Nepal. Global Tiger Forum. https://doi.org/10.13140/2.1.2737.2808

  16. Kc, K., Bhumpakhpan, N., Trisurat, Y., Mainmit, N., Ghimire, K., & Subedi, M. (2020). Analysis of potential distribution of tiger habitat using MaxEnt in Chitwan National Park. Nepal. Journal of Remote Sensing and GIS Association of Thailand, 21(3), 1–15.

    Google Scholar 

  17. WWF-Washington. (2022). Facts. Retrieved February 6, 2022, from https://www.worldwildlife.org/species/tiger

  18. Kywe, T. Z. (2012). Habitat suitability modeling for tiger (Panthera tigris) in the Hukaung Valley Tiger Reserve, Northern Myanmar. Doctoral dissertation, Niedersächsische Staats-und Universitätsbibliothek Göttingen. https://d-nb.info/1042263000/34

  19. WWF Tigers Alive. (2020). Landscape connectivity science and practice: Ways forward for large ranging species and their landscapes. Workshop Report, WWF International. https://www.wwf.pl/sites/default/files/202211/2020_Landscape_Connectivity_Science_and_Practice_Ways_Forward_for_Large_Ranging_Species_and_Their_Landscapes_Lauren_Simmonds.pdf

  20. Rather, T. A., Kumar, S., & Khan, J. A. (2021). Using machine learning to predict habitat suitability of sloth bears at multiple spatial scales. Ecological Processes, 10(1). https://doi.org/10.1186/s13717-021-00323-3

  21. Bajaj, S., & Geraldine Bessie Amali, D. (2019). Species environmental niche distribution modeling for Panthera Tigris Tigris ‘royal Bengal tiger’using machine learning. In: Advances in Intelligent Systems and Computing, Springer, Singapore, pp. 251–263. https://doi.org/10.1007/978-981-13-5953-8_22

  22. Singh, A., & Kushwaha, S. P. S. (2011). Refining logistic regression models for wildlife habitat suitability modeling-A case study with muntjak and goral in the Central Himalayas. India. Ecological Modelling, 222(8), 1354–1366. https://doi.org/10.1016/j.ecolmodel.2011.02.012

    Article  Google Scholar 

  23. Kumar, A. A., Sivakumar, R., & Ramesh, K. (2013). Assessing habitat suitability for tiger (Panthera tigris) in Panna Tiger Reserve, Madhya Pradesh, India: A geospatial approach. Scientific Transactions in Enviornment and Technovation, 7(2), 77–81. https://doi.org/10.20894/STET.116.007.002.003

    Article  Google Scholar 

  24. Gehlot, H. S., & Joshi, P. (2019). Geospatial modelling of potential habitat of tiger (Panthera tigris tigris) in Corbett-Kosi river corridor of Uttrakhand, India. Journal of Environment and Bio- sciences, 33(2), 211–219.

    Google Scholar 

  25. Sarkar, M. S., Krishnamurthy, R., Johnson, J. A., Sen, S., & Saha, G. K. (2017). Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in Central India. PeerJ, 5, e3920. https://doi.org/10.7717/peerj.3920

    Article  Google Scholar 

  26. Jain, P., Ahmed, R., Sajjad, H., Sahana, M., Jaafari, A., Dou, J., & Hong, H. (2021). Habitat suitability mapping of sloth bear (Melursus ursinus) in the Sariska Tiger Reserve (India) using a GIS-based fuzzy analytical hierarchy process. In Remote Sensing and GIScience (pp. 205–227). Springer, Cham. https://doi.org/10.1007/978-3-030-55092-9_12

  27. Lim, C. H., Yoo, S., Choi, Y., Jeon, S. W., Son, Y., & Lee, W. K. (2018). Assessing climate change impact on forest habitat suitability and diversity in the Korean Peninsula. Forests, 9(5), 259. https://doi.org/10.3390/f9050259

    Article  Google Scholar 

  28. Khan, R. U., Ali, N., Rahman, I. U., & Rahman, S. U. (2021). Predicting the impacts of climate change on the potential distribution pattern of endangered Himalayan natives (Ulmus wallichiana and U. villosa) in Pakistan. Arabian Journal of Geosciences, 14(23), 1–11. https://doi.org/10.1007/s12517-021-08969-1

    Article  Google Scholar 

  29. Mukul, S. A., Alamgir, M., Sohel, M. S. I., Pert, P. L., Herbohn, J., Turton, S. M., Khan, M. S. I., Munim, S. A., Reza, A. H. M. A., & Laurance, W. F. (2019). Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Science of The Total Environment, 663, 830–840. https://doi.org/10.1016/J.SCITOTENV.2019.01.383

    Article  CAS  Google Scholar 

  30. Ngo, H. N., Nguyen, H. Q., Phan, T. Q., Nguyen, T. Q., Gewiss, L. R., Rödder, D., & Ziegler, T. (2022). Modeling the environmental refugia of the endangered Lichtenfelder’s Tiger Gecko (Goniurosaurus lichtenfelderi) towards implementation of transboundary conservation. Frontiers of Biogeography, 13(4), e51167. https://doi.org/10.21425/f5fbg51167

  31. Kimsing, A. T., Ngukir, J., Biju, T., & Mize, D. (2022). White-rumped vulture’s habitat suitability prediction using MaxEnt in Arunachal Pradesh. Asian Journal of Biology, 15(1), 18–30. https://doi.org/10.9734/AJOB/2022/v15i130229

    Article  Google Scholar 

  32. Wang, M., Hu, Z., Wang, Y., & Zhao, W. (2023). Spatial distribution characteristics of suitable planting areas for Pyrus species under climate change in China. Plants, 12(7), 1559. https://doi.org/10.3390/plants12071559

    Article  CAS  Google Scholar 

  33. Sharifian, S., Mortazavi, M. S., & Mohebbi Nozar, S. L. (2023). The ecological response of commercial fishes and shrimps to climate change: Predicting global distributional shifts under future scenarios. Regional Environmental Change, 23(2), 64. https://doi.org/10.1007/s10113-023-02052-z

    Article  Google Scholar 

  34. Dutta, T., Sharma, S., McRae, B. H., Roy, P. S., & DeFries, R. (2016). Connecting the dots: Mapping habitat connectivity for tigers in Central India. Regional Environmental Change, 16(S1), 53–67. https://doi.org/10.1007/s10113-015-0877-z

    Article  Google Scholar 

  35. Mahmoodi, S., Shadloo, S., Rezaei, S., & Shabani, A. A. (2023). Prediction of habitat suitability, connectivity, and corridors in the future to conserve roe deer (Capreolus capreolus) as a locally endangered species in northern Iran. Journal for Nature Conservation, 71, 126313. https://doi.org/10.1016/j.jnc.2022.126313

    Article  Google Scholar 

  36. Hameed, S., ud Din, J., Ali, H., Kabir, M., Younas, M., Ur Rehman, E., Bari, F., Hao, W., Bischof, R., & Nawaz, M. A. (2020). Identifying priority landscapes for conservation of snow leopards in Pakistan. PLoS ONE 15(11), e0228832. https://doi.org/10.1371/journal.pone.0228832

  37. Jiang, F., Li, G., Qin, W., Zhang, J., Lin, G., Cai, Z., Gao, H., & Zhang, T. (2019). Setting priority conservation areas of wild Tibetan gazelle (Procapra picticaudata) in China’s first national park. Global Ecology and Conservation, 20, e00725. https://doi.org/10.1016/j.gecco.2019.e00725

    Article  Google Scholar 

  38. Gardener, B. (2020). Habitat modelling of the Amur leopard and Siberian tiger for future reintroduction using conservation priority setting, ecological corridors and carrying capacities. Master dissertation, Bangor University. https://www.proquest.com/openview/916c691bebef565174871581f704311f/1?pqorigsite=gscholar&cbl=18750&diss=y

  39. Thinley, P., Rajaratnam, R., Morreale, S. J., & Lassoie, J. P. (2021). Assessing the adequacy of a protected area network in conserving a wide-ranging apex predator: The case for tiger (Panthera tigris) conservation in Bhutan. Conservation Science and Practice, 3(2), e318. https://doi.org/10.1111/CSP2.318

    Article  Google Scholar 

  40. Sun, X., Long, Z., & Jia, J. (2021). A multi-scale MaxEnt approach to model habitat suitability for the giant pandas in the Qionglai Mountain. China. Global Ecology and Conservation, 30, e01766. https://doi.org/10.1016/j.gecco.2021.e01766

    Article  Google Scholar 

  41. Dong, X., Zhang, J., Gu, X., Wang, Y., Bai, W., & Huang, Q. (2021). Evaluating habitat suitability and potential dispersal corridors across the distribution landscape of the Chinese red panda (Ailurus styani) in Sichuan. China. Global Ecology and Conservation, 28, e01705. https://doi.org/10.1016/j.gecco.2021.e01705

    Article  Google Scholar 

  42. Jin, Y., Kong, W., Yan, H., Bao, G., Liu, T., Ma, Q., Li, X., Zou, H., & Zhang, M. (2021). Multi-scale spatial prediction of wild boar damage risk in Hunchun: A key tiger range in China. Animals, 11(4), 1012. https://doi.org/10.3390/ani11041012

  43. Matyukhina, D. S., Miquelle, D. G., Murzin, A. A., Pikunov, D. G., Fomenko, P. V., Aramilev, V. V., Litvinov, M. N., Salkina, G. P., Seryodkin, I. V., Nikolaev, I. G., Kostyria, A. V., Gaponov, V. V., Yudin, V. G., Dunishenko, Y. M., Smirnov, E. N., Korkishko, V. G., & Marino, J. (2014). Assessing the influence of environmental parameters on Amur tiger distribution in the Russian Far East using a MaxEnt modeling approach. Achievements in the Life Sciences, 8(2), 95–100. https://doi.org/10.1016/j.als.2015.01.002

    Article  Google Scholar 

  44. Sun, X., Long, Z., & Jia, J. (2022). Identifying core habitats and corridors for giant pandas by combining multiscale random forest and connectivity analysis. Ecology and Evolution, 12(2), e8628. https://doi.org/10.1002/ece3.8628

  45. Torretta, E., Dondina, O., Delfoco, C., Riboldi, L., Orioli, V., Lapini, L., & Alberto, M. (2020). First assessment of habitat suitability and connectivity for the golden jackal in north-eastern Italy. Mammalian Biology, 100(6), 631–643. https://doi.org/10.1007/s42991-020-00069-z

    Article  Google Scholar 

  46. Huang, C., Li, X., Khanal, L., & Jiang, X. (2019). Habitat suitability and connectivity inform a co-management policy of protected area network for Asian elephants in China. PeerJ, 7, e6791. https://doi.org/10.7717/peerj.6791

    Article  Google Scholar 

  47. Harsh, S., Jena, J. & Dave, C. (2015). Connecting habitat corridors for tigers in Panna Landscape - A rapid assessment of forests around Panna Tiger Reserve. WWF India, New Delhi, India. https://wwfin.awsassets.panda.org/downloads/panna_report_web.pdf

  48. Kanagaraj, R., Wiegand, T., Kramer-Schadt, S., Anwar, M., & Goyal, S. P. (2011). Assessing habitat suitability for tiger in the fragmented Terai Arc Landscape of India and Nepal. Ecography, 34(6), 970–981. https://doi.org/10.1111/j.1600-0587.2010.06482.x

    Article  Google Scholar 

  49. Maurya, K. K., & Borah, J. (2013). Status of tigers in Valmiki Tiger Reserve, Terai Arc Landscape, Bihar. WWF-India. https://www.researchgate.net/publication/262525815_Status_of_tigers_in_Valmiki_Tiger_ReserveTerai_Arc_Landscape_Bihar_India_WWF-India

  50. Kumar, R. and Sinha, S. (2016). Planning and implementation of ecotourism in Valmiki Tiger Reserve. Lambert Academic Publishinghttps://www.researchgate.net/publication/311985959_Planning_and_implementation_of_ecotourism_in_Valmiki_Tiger_Reserve

  51. Bihar Government. (2018). Official website: Valmiki Tiger Reserve. Retrieved February 6, 2022, from https://www.valmikitigerreserve.com/landscape.php

  52. ISFR. (2021). India state of forest report. Forest Survey of India, Ministry of Environment Forest and Climate Change, Dehradun. https://fsi.nic.in/forest-report-2021

  53. NTCA. (2020). Project Tiger Report on Valmiki Tiger Reserve. National Tiger Conservation Authority, India. https://ntca.gov.in/assets/uploads/briefnote/valmiki.pdf

  54. Global Forest Watch. (2019). Tree cover. Retrieved December 6, 2021, from https://www.arcgis.com/home/item.html?id=3d39084cc55d433ca1a51254f167cdc5

  55. Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S., Kushwaha, S. P. S., Jha, C. S., Sudhakar, S., Joshi, P. K., Reddy, C. S., Gupta, S., Pujar, G., Dutt, C. B. S., Srivastava, V. K., Porwal, M. C., Tripathi, P., Singh, J. S., Chitale, V., Skidmore, A. K., et al. (2015). New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39, 142–159. https://doi.org/10.1016/j.jag.2015.03.003

  56. ESRI Land cover. (2020). Global land use/land cover with Sentinel-2 and deep learning. Retrieved November 6, 2021, from https://www.arcgis.com/home/item.html?id=8214141a576848f69f440c793144f6ce

  57. Mishra, A., Sarup, J., & Gupta, D. C. (2021). Geo spatial approach for tiger habitat suitability mapping: A case study of Bandhavgarh National Park, Madhya Pradesh, India. International Journal of Geography, Geology and Environment, 3(2), 1–7. https://doi.org/10.22271/27067483.2021.v3.i2a.53

  58. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342, 850–853. https://earthenginepartners.appspot.com/science-2013-global-forest

  59. Ahmed, M. R., Rahaman, K. R., & Hassan, Q. K. (2018). Remote sensing of wildland fire-induced risk assessment at the community level. Sensors, 18(5), 1570. https://doi.org/10.3390/s18051570

  60. Kaboodvandpour, S., Almasieh, K., & Zamani, N. (2021). Habitat suitability and connectivity implications for the conservation of the Persian leopard along the Iran-Iraq border. Ecology and Evolution, 11(19), 13464–13474. https://doi.org/10.1002/ece3.8069

    Article  Google Scholar 

  61. Zhang, J., Jiang, F., Cai, Z., Dai, Y., Liu, D., Song, P., Hou, Y., Gao, H., & Zhang, T. (2021). Resistance-based connectivity model to construct corridors of the Przewalski’s gazelle (Procapra Przewalskii) in fragmented landscape. Sustainability, 13(4), 1656. https://doi.org/10.3390/su13041656

    Article  Google Scholar 

  62. Zhang, J., Jiang, F., Li, G., Qin, W., Li, S., Gao, H., Cai, Z., Lin, G., & Zhang, T. (2019). MaxEnt modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park. China. Ecology and Evolution, 9(11), 6643–6654. https://doi.org/10.1002/ece3.5243

    Article  Google Scholar 

  63. Lham, D., Cozzi, G., Sommer, S., Thinley, P., Wangchuk, N., Wangchuk, S., & Ozgul, A. (2021). Modeling distribution and habitat suitability for the snow leopard in Bhutan. Frontiers in Conservation Science, 2, 87. https://doi.org/10.3389/fcosc.2021.781085

    Article  Google Scholar 

  64. Yan, H., Feng, L., Zhao, Y., Feng, L., Wu, D., & Zhu, C. (2020). Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Global Ecology and Conservation, 21, e00856. https://doi.org/10.1016/j.gecco.2019.e00856

    Article  Google Scholar 

  65. Su, H., Bista, M., & Li, M. (2021). Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from MaxEnt and GARP models. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-93540-x

    Article  CAS  Google Scholar 

  66. Wang, G., Wang, C., Guo, Z., Dai, L., Wu, Y., Liu, H., Li, Y., Chen, H., Zhang, Y., Zhao, Y., Cheng, H., Ma, T., & Xue, F. (2020). Integrating MaxEnt model and landscape ecology theory for studying spatiotemporal dynamics of habitat: Suggestions for conservation of endangered red-crowned crane. Ecological Indicators, 116, 106472. https://doi.org/10.1016/j.ecolind.2020.106472

    Article  Google Scholar 

  67. Bleyhl, B., Sipko, T., Trepet, S., Bragina, E., Leitão, P. J., Radeloff, V. C., & Kuemmerle, T. (2015). Mapping seasonal European bison habitat in the Caucasus Mountains to identify potential reintroduction sites. Biological Conservation, 191, 83–92. https://doi.org/10.1016/j.biocon.2015.06.011

    Article  Google Scholar 

  68. Ash, E., Macdonald, D. W., Cushman, S. A., Noochdumrong, A., Redford, T., & Kaszta, Ż. (2021). Correction to: Optimization of spatial scale, but not functional shape, affects the performance of habitat suitability models: A case study of tigers (Panthera tigris) in Thailand. Landscape Ecology, 36(6), 1837. https://doi.org/10.1007/s10980-020-01105-6

    Article  Google Scholar 

  69. Alamgir, M., Mukul, S. A., & Turton, S. M. (2015). Modelling spatial distribution of critically endangered Asian elephant and Hoolock gibbon in Bangladesh forest ecosystems under a changing climate. Applied Geography, 60, 10–19. https://doi.org/10.1016/j.apgeog.2015.03.001

    Article  Google Scholar 

  70. Imam, E., Kushwaha, S. P. S., & Singh, A. (2009). Evaluation of suitable tiger habitat in Chandoli National Park, India, using spatial modelling of environmental variables. Ecological Modelling, 220(24), 3621–3629. https://doi.org/10.1016/j.ecolmodel.2009.06.044

    Article  Google Scholar 

  71. Neelakantan, A., DeFries, R., & Krishnamurthy, R. (2019). Resettlement and landscape-level conservation: Corridors, human-wildlife conflict, and forest use in Central India. Biological Conservation, 232, 142–151. https://doi.org/10.1016/j.biocon.2019.01.033

    Article  Google Scholar 

  72. Sharma, S., Dutta, T., Maldonado, J. E., Wood, T. C., Panwar, H. S., & Seidensticker, J. (2013). Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of Central India. Proceedings of the Royal Society B: Biological Sciences, 280(1767), 20131506. https://doi.org/10.1098/rspb.2013.1506

    Article  Google Scholar 

  73. Cao, Y., Yang, R., & Carver, S. (2020). Linking wilderness mapping and connectivity modelling: A methodological framework for wildland network planning. Biological Conservation, 251, 108679. https://doi.org/10.1016/j.biocon.2020.108679

    Article  Google Scholar 

  74. Liu, C., Newell, G., White, M., & Bennett, A. F. (2018). Identifying wildlife corridors for the restoration of regional habitat connectivity: A multispecies approach and comparison of resistance surfaces. PLoS ONE, 13(11), e0206071. https://doi.org/10.1371/journal.pone.0206071

    Article  CAS  Google Scholar 

  75. Roshani., Sajjad, H., Rahaman, M. H. Rehman, S., Masroor, M., & Ahmed, R. (2022). Assessing forest health using remote sensing-based indicators and fuzzy analytic hierarchy process in Valmiki Tiger Reserve, India. International Journal of Environmental Science and Technology, 20, 8579–8598. https://doi.org/10.1007/s13762-022-04512-1

    Article  Google Scholar 

  76. Roshani, Sajjad, H., Rahaman, M. H., Masroor, M., Sharma, Y., Sharma, A., & Saha, T. K. (2024). Vulnerability assessment of forest ecosystem based on exposure, sensitivity and adaptive capacity in the Valmiki Tiger Reserve, India: A geospatial analysis. Ecological Informatics, 80, 102494. https://doi.org/10.1016/j.ecoinf.2024.102494

Download references

Acknowledgements

The authors express deep gratitude to Environment and Forest Department, Bettiah, West Champaran, Bihar, ESRI, NASA POWER, and USGS for providing valuable data needed for accomplishing this research. The authors are also thankful to the anonymous reviewers and the editor for their invaluable comments and suggestions. Their constructive feedback has significantly contributed to enhancing the overall quality of the manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing—original draft preparation: Roshani; methodology, resources, and validation: Md Hibjur Rahaman and Md Masroor; writing—review and editing: Roshani and Tamal Kanti Saha; supervision, formal analysis, and investigation: Haroon Sajjad.

Corresponding author

Correspondence to Haroon Sajjad.

Ethics declarations

Ethics Approval

This is an observational study. The Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshani, Rahaman, M.H., Masroor, M. et al. Assessment of Habitat Suitability and Potential Corridors for Bengal Tiger (Panthera tigris tigris) in Valmiki Tiger Reserve, India, Using MaxEnt Model and Least-Cost Modeling Approach. Environ Model Assess (2024). https://doi.org/10.1007/s10666-024-09966-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10666-024-09966-w

Keywords

Navigation