Skip to main content
Log in

Forecasting Hourly Ozone Concentration Using Functional Time Series Model—A Case Study in the Coastal Area of Bangladesh

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Ozone has a significant impact on the environment. Atmospheric ozone concentration in coastal tourist areas now gains greater importance because tourists’ skin is directly exposed to sunlight. The current research provides the best prediction model to improve the prediction accuracy of ozone level for the coastal area of Bangladesh. The functional time series analysis (FTSA) is a direct extension of function-to-function regression model dealing with continuous curves. The proposed functional time series–based model was applied to the hourly ozone series observed over 92 days starting from March 2019 to May 2019 in the coastal area of Bangladesh. Descriptive measures were used to estimate the overall temporal patterns, and the functional principal component regression model (FPCR) was used to predict first day of monsoon season. In addition, functional autoregressive model (FAR(1)) was used to measure the impact of 1-h differences on next day’s ozone levels. Results of functional principal component regression reveal complex dynamic patterns of the ozone levels over hours and days. The first principal component primarily models afternoon-hour ozone levels, and the second principal component models the complex difference pattern between midnight to early morning, and the rest of the hourly ozone concentration. In addition, from FAR(1) model, our results confirm the moderate effect of ozone series of current day on the next day when the 1-h difference is observed (more specifically around office hours: 8 am to 17 pm). Finally, the highest peak was observed for forecasted series at 11 am. Intriguingly, we discovered that anticipated values perfectly fit observed values, resulting in the smallest forecasting error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Data could be available from the second author upon request and code could be available from the corresponding author upon request.

References

  1. Cakaj, A., Qorri, E., Coulibaly, F., Marco, A. D., Agathokleous, E., Leca, S., & Sicard, P. (2023). Assessing surface ozone risk to human health and forests over time in Poland. Atmospheric Environment, 309, 119926. https://doi.org/10.1016/j.atmosenv.2023.119926

    Article  CAS  Google Scholar 

  2. Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2002). Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. Science of the Total Environment, 299, 97–113.

    Article  ADS  PubMed  Google Scholar 

  3. Rashidi, R., Khaniabadi, Y. O., Sicard, P., De Marco, A., & Anbari, K. (2023). Ambient PM2.5 and O3 pollution and health impacts in Iranian megacity. Stochastic Environmental Research and Risk Assessment, 37, 175–184.

    Article  PubMed  Google Scholar 

  4. Sellami, F., Dammak, R., & Azri, C. (2023). Analysis of daily and diurnal O3–NOx relationships and assessment of local/regional oxidant (OX= O3 + NO2) levels and associated human health risk at a coastal suburban site of Sfax (Tunisia). Archives of Environmental Contamination and Toxicology, 84, 119–136.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, J., Gao, A., Li, S., Liu, Y., Zhao, W., Wang, P., & Zhang, H. (2023). Regional joint PM2.5-O3 control policy benefits further air quality improvement and human health protection in Beijing-Tianjin-Hebei and its surrounding areas. Journal of Environmental Sciences, 130, 75–84.

    Article  CAS  Google Scholar 

  6. Percy, K. E., & Ferretti, M. (2004). Air pollution and forest health: Toward new monitoring concepts. Environmental Pollution, 130, 113–126.

    Article  PubMed  CAS  Google Scholar 

  7. Crutzen, P. J., Lawrence, M. G., & Pöschl, U. (1999). On the background photochemistry of tropospheric Ozone. Tellus B: Chemical and Physical Meteorology, 51, 123–146.

    Article  ADS  Google Scholar 

  8. EPA, U. (2013). Final report: Integrated science assessment of ozone and related photochemical oxidants. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  9. Kovač-Andrić, E., Brana, J., & Gvozdić, V. (2009). Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecological Informatics, 4, 117–122.

    Article  Google Scholar 

  10. Borhani, F., Ehsani, A. H., Shafiepour Motlagh, M., & Rashidi, Y. (2023). Estimate ground-based PM2.5 concentrations with Merra-2 aerosol components in Tehran, Iran: Merra-2 PM2.5 concentrations verification and meteorological dependence. Environment, Development and Sustainability, 1–42.

  11. Borhani, F., Shafiepour Motlagh, M., Ehsani, A. H., Rashidi, Y., Ghahremanloo, M., Amani, M., & Moghimi, A. (2023). Current status and future forecast of short-lived climate-forced ozone in Tehran, Iran, derived from ground-based and satellite observations. Water, Air, & Soil Pollution, 234, 134.

    Article  ADS  CAS  Google Scholar 

  12. Xu, T., Zhang, C., Liu, C., & Hu, Q. (2023). Variability of PM2.5 and O3 concentrations and their driving forces over Chinese megacities during 2018–2020. Journal of Environmental Sciences, 124, 1–10. https://doi.org/10.1016/j.jes.2021.10.014

    Article  CAS  Google Scholar 

  13. David, L. M., Girach, I. A., & Nair, P. R. (2011). Distribution of ozone and its precursors over Bay of Bengal during winter 2009: Role of meteorology. Annales Geophysicae (pp. 1613–1627). Copernicus GmbH.

    Google Scholar 

  14. David, L. M., & Nair, P. R. (2011). Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site: Association with mesoscale and synoptic meteorological conditions. Journal of Geophysical Research: Atmospheres, 116.

  15. Nair, P. R., Ajayakumar, R. S., David, L. M., Girach, I. A., & Mottungan, K. (2018). Decadal changes in surface Ozone at the tropical station Thiruvananthapuram (8.542 N, 76.858 E), India: Effects of anthropogenic activities and meteorological variability. Environmental Science and Pollution Research, 25, 14827–14843.

    Article  PubMed  CAS  Google Scholar 

  16. Nair, P. R., Chand, D., Lal, S., Modh, K. S., Naja, M., Parameswaran, K., Ravindran, S., & Venkataramani, S. (2002). Temporal variations in surface ozone at Thumba (8.6 N, 77 E)-A tropical coastal site in India. Atmospheric Environment, 36(4), 603–610.

    Article  ADS  CAS  Google Scholar 

  17. Nair, P. R., David, L. M., Girach, I. A., & George, K. S. (2011). Ozone in the marine boundary layer of Bay of Bengal during post-winter period: Spatial pattern and role of meteorology. Atmospheric Environment, 45, 4671–4681.

    Article  ADS  CAS  Google Scholar 

  18. Bui, L. T., & Nguyen, P. H. (2023). Ground-level ozone in the Mekong Delta region: Precursors, meteorological factors, and regional transport. Environmental Science and Pollution Research, 30, 23691–23713.

    Article  PubMed  CAS  Google Scholar 

  19. Ihedike, C., Mooney, J. D., Fulton, J., & Ling, J. (2023). Evaluation of real-time monitored ozone concentration from Abuja, Nigeria. BMC Public Health, 23, 1–7.

    Article  Google Scholar 

  20. Liao, Z., Pan, Y., Ma, P., Jia, X., Cheng, Z., Wang, Q., Dou, Y., Zhao, X., Zhang, J., & Quan, J. (2023). Meteorological and chemical controls on surface ozone diurnal variability in Beijing: A clustering-based perspective. Atmospheric Environment, 295, 119566. https://doi.org/10.1016/j.atmosenv.2022.119566

    Article  CAS  Google Scholar 

  21. Zheng, X., Ren, J., Hao, Y., & Xie, S. (2023). Weekend-weekday variations, sources, and secondary transformation potential of volatile organic compounds in urban Zhengzhou, China. Atmospheric Environment, 300, 119679. https://doi.org/10.1016/j.atmosenv.2023.119679

    Article  CAS  Google Scholar 

  22. Xie, Q., Tham, Y. J., Yu, X., Wang, Z., Ling, Z., Wang, X., Guo, H., & Wang, T. (2023). Seasonal variations of O3 formation mechanism and atmospheric photochemical reactivity during severe high O3 pollution episodes in the Pearl River Delta region. Atmospheric Environment, 309, 119918. https://doi.org/10.1016/j.atmosenv.2023.119918

    Article  CAS  Google Scholar 

  23. Dhawan, S., George, M. P., Jayachandran, K. S., & Khare, M. (2023). Tropospheric ozone variability in Delhi during pre & post monsoon periods: Decoding influence of seasonal variation, diurnal variation, short-range and long-range transport. Urban Climate, 47, 101374. https://doi.org/10.1016/j.uclim.2022.101374

    Article  Google Scholar 

  24. Yang, J., Kang, S., Hu, Y., Chen, X., & Rai, M. (2022). Influence of South Asian biomass burning on ozone and aerosol concentrations over the Tibetan Plateau. Advances in Atmospheric Sciences, 39, 1184–1197.

    Article  ADS  CAS  Google Scholar 

  25. Alghamdi, M. A., Khoder, M., Harrison, R. M., Hyvärinen, A.-P., Hussein, T., Al-Jeelani, H., Abdelmaksoud, A. S., Goknil, M. H., Shabbaj, I. I., & Almehmadi, F. M. (2014). Temporal variations of O3 and NOx in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Atmospheric Environment, 94, 205–214.

    Article  ADS  CAS  Google Scholar 

  26. Chan, C. Y., & Chan, L. Y. (2000). Effect of meteorology and air pollutant transport on ozone episodes at a subtropical coastal Asian city, Hong Kong. Journal of Geophysical Research: Atmospheres, 105, 20707–20724.

    Article  CAS  Google Scholar 

  27. Chang, J.H.-W., Griffith, S. M., & Lin, N.-H. (2022). Impacts of land-surface forcing on local meteorology and ozone concentrations in a heavily industrialized coastal urban area. Urban Climate, 45, 101257. https://doi.org/10.1016/j.uclim.2022.101257

    Article  Google Scholar 

  28. Kang, J.-E., Song, S.-K., Lee, H. W., & Kim, Y.-K. (2012). The influence of meteorological conditions and complex topography on ozone concentrations in a valley area near coastal metropolitan cities. Terrestrial, Atmospheric & Oceanic Sciences, 23, 25–38.

    Article  ADS  Google Scholar 

  29. Ding, J., Dai, Q., Fan, W., Lu, M., Zhang, Y., Han, S., & Feng, Y. (2023). Impacts of meteorology and precursor emission change on O3 variation in Tianjin, China from 2015 to 2021. Journal of Environmental Sciences, 126, 506–516. https://doi.org/10.1016/j.jes.2022.03.010

    Article  CAS  Google Scholar 

  30. Zhang, Z., Sun, Y., & Li, J. (2023). Characteristics and sources of VOCs in a coastal city in eastern China and the implications in secondary organic aerosol and O3 formation. Science of The Total Environment, 887, 164117.

    Article  ADS  PubMed  CAS  Google Scholar 

  31. Bloomfield, P., Royle, J. A., Steinberg, L. J., & Yang, Q. (1996). Accounting for meteorological effects in measuring urban ozone levels and trends. Atmospheric Environment, 30, 3067–3077.

    Article  ADS  CAS  Google Scholar 

  32. Cox, W. M., & Chu, S. H. (1996). Assessment of interannual ozone variation in urban areas from a climatological perspective. Atmospheric Environment, 30, 2615–2625.

    Article  ADS  CAS  Google Scholar 

  33. Gardner, M. W., & Dorling, S. R. (2000). Meteorologically adjusted trends in UK daily maximum surface ozone concentrations. Atmospheric Environment, 34, 171–176.

    Article  ADS  CAS  Google Scholar 

  34. Korsog, P. E., & Wolff, G. T. (1991). An examination of urban ozone trends in the northeastern US (1973–1983) using a robust statistical method. Atmospheric Environment. Part B. Urban Atmosphere, 25, 47–57.

    Article  ADS  Google Scholar 

  35. Pryor, S. C. (1998). A case study of emission changes and ozone responses. Atmospheric Environment, 32, 123–131.

    Article  ADS  CAS  Google Scholar 

  36. Smith, R. L., & Shively, T. S. (1995). Point process approach to modeling trends in tropospheric ozone based on exceedances of a high threshold. Atmospheric Environment, 29, 3489–3499.

    Article  ADS  CAS  Google Scholar 

  37. Xu, D., Yap, D., & Taylor, P. A. (1996). Meteorologically adjusted ground level ozone trends in Ontario. Atmospheric Environment, 30, 1117–1124.

    Article  ADS  CAS  Google Scholar 

  38. Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modeling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software, 20, 1263–1271.

    Article  Google Scholar 

  39. Hassanzadeh, S., Hosseinibalam, F., & Omidvari, M. (2008). Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan. Physica A: Statistical Mechanics and its Applications, 387, 2317–2327.

    Article  ADS  CAS  Google Scholar 

  40. Tarasova, O. A., & Karpetchko, A. Y. (2003). Accounting for local meteorological effects in the ozone time-series of Lovozero (Kola Peninsula). Atmospheric Chemistry and Physics, 3, 941–949. https://doi.org/10.5194/acp-3-941-2003

    Article  ADS  CAS  Google Scholar 

  41. Arsić, M., Mihajlović, I., Nikolić, D., Živković, Ž, & Panić, M. (2020). Prediction of ozone concentration in ambient air using multilinear regression and the artificial neural networks methods. Ozone: Science & Engineering, 42, 79–88.

    Article  ADS  Google Scholar 

  42. Felipe-Sotelo, M., Gustems, L., Hernández, I., Terrado, M., & Tauler, R. (2006). Investigation of geographical and temporal distribution of tropospheric ozone in Catalonia (North-East Spain) during the period 2000–2004 using multivariate data analysis methods. Atmospheric Environment, 40, 7421–7436.

    Article  ADS  CAS  Google Scholar 

  43. Karatzas, K. D., & Kaltsatos, S. (2007). Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece. Simulation Modelling Practice and Theory, 15, 1310–1319.

    Article  Google Scholar 

  44. Lengyel, A., Héberger, K., Paksy, L., Bánhidi, O., & Rajkó, R. (2004). Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, 57, 889–896.

    Article  ADS  PubMed  CAS  Google Scholar 

  45. Statheropoulos, M., Vassiliadis, N., & Pappa, A. (1998). Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmospheric Environment, 32, 1087–1095.

    Article  ADS  CAS  Google Scholar 

  46. Shang, H. L., & Hyndman, R. J. (2011). Nonparametric time series forecasting with dynamic updating. Mathematics and Computers in Simulation, 81, 1310–1324.

    Article  MathSciNet  Google Scholar 

  47. Hyndman, R. J., & Ullah, M. S. (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics & Data Analysis, 51, 4942–4956.

    Article  MathSciNet  Google Scholar 

  48. Jiao, S., Aue, A., & Ombao, H. (2021). Functional time series prediction under partial observation of the future curve. Journal of the American Statistical Association, 1–12.

  49. Akhtar, N., Yamaguchi, M., Inada, H., Hoshino, D., Kondo, T., Fukami, M., Funada, R., & Izuta, T. (2010). Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.). Environmental Pollution, 158, 2970–2976.

    Article  PubMed  CAS  Google Scholar 

  50. Akhtar, N., Yamaguchi, M., Inada, H., Hoshino, D., Kondo, T., & Izuta, T. (2010). Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.). Environmental Pollution, 158, 1763–1767.

    Article  PubMed  CAS  Google Scholar 

  51. Saitanis, C. J., Bari, S. M., Burkey, K. O., Stamatelopoulos, D., & Agathokleous, E. (2014). Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environmental Science and Pollution Research, 21, 13560–13571.

    Article  PubMed  CAS  Google Scholar 

  52. Karim, R., & Rafi, T. H. (2020). An automated LSTM-based air pollutant concentration estimation of Dhaka city, Bangladesh. International Journal of Engineering and Information Systems, 4, 88–101.

    Google Scholar 

  53. Mukta, T. A., Hoque, M. M. M., Sarker, M. E., Hossain, M. N., & Biswas, G. K. (2020). Seasonal variations of gaseous air pollutants (SO2, NO2, O3, CO) and particulates (PM2.5, PM10) in Gazipur: an industrial city in Bangladesh. Advances in Environmental Technology, 6, 195–209.

    Google Scholar 

  54. Sikder, H. A., Nasiruddin, M., Suthawaree, J., Kato, S., & Kajii, Y. (2013). Long term observation of surface O3 and its precursors in Dhaka, Bangladesh. Atmospheric Research, 122, 378–390.

    Article  ADS  CAS  Google Scholar 

  55. Begum, B. A., Saroar, G., Nasiruddin, M., & Biswas, S. K. (2012). Ground-level concentration of ozone in ambient air in Chittagong (Bangladesh) city. Bangladesh Journal of Scientific and Industrial Research, 47, 83–88.

    Article  CAS  Google Scholar 

  56. Hoque, M. M. M., Khan, M. M., Sarker, M. E., Hossain, M. N., Islam, M. S., Khan, M. M. H., Shil, M., & Sarker, M. N. I. (2022). Assessment of seasonal variations of air quality and AQI status: Evidence from Chittagong, Bangladesh. Indonesian Journal of Environmental Management and Sustainability, 6, 88–97.

    Article  Google Scholar 

  57. Jamaluddin, A. M., & Khorshed, A. M. (n.d.). Chemical assessment of gaseous pollutants and particulate matters in air of Chittagong city.

  58. Ramsay, J. O., & Sileverman, B. (2005). Functional data analysis. New York: Springer.

    Book  Google Scholar 

  59. Wang, J. L., Chiou, J. M., & Müller, H. G. (2016). Functional data analysis. Annual Review of Statistics and its Application, 3, 257–295.

    Article  ADS  Google Scholar 

  60. Shang, H. L., & Hyndman, R. J. (2017). Grouped functional time series forecasting: An application to age-specific mortality rates. Journal of Computational and Graphical Statistics, 26(2), 330–343.

    Article  MathSciNet  Google Scholar 

  61. Erbas, B., Akram, M., Gertig, D. M., English, D., Hopper, J. L., Kavanagh, A. M., & Hyndman, R. (2010). Using functional data analysis models to estimate future time trends in age-specific breast cancer mortality for the United States and England-Wales. Journal of Epidemiology, 20, 159–165.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shen, H., & Huang, J. Z. (2008). Interday forecasting and intraday updating of call center arrivals. Manufacturing & Service Operations Management, 10, 391–410.

    Article  Google Scholar 

  63. Hyndman, R. J., Zeng, Y., & Shang, H. L. (2021). Forecasting the old-age dependency ratio to determine a sustainable pension age. Australian & New Zealand Journal of Statistics, 63, 241–256.

    Article  MathSciNet  Google Scholar 

  64. Hörmann, S., & Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics, 38, 1845–1884.

    Article  MathSciNet  Google Scholar 

  65. Hyndman, R. J., & Shang, H. L. (2009). Forecasting functional time series. Journal of the Korean Statistical Society, 38, 199–211.

    Article  MathSciNet  Google Scholar 

  66. Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27, 1–22.

    Article  Google Scholar 

  67. Bosq, D. (2000). Implementation of functional autoregressive predictors and numerical applications. Linear processes in function spaces (pp. 237–261). Springer.

    Chapter  Google Scholar 

  68. Shang, H. (2013). FTSA: An R package for analyzing functional time series. The R Journal, 5, 64–72.

    Article  Google Scholar 

  69. Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99, 673–686.

    Article  MathSciNet  Google Scholar 

  70. R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

    Google Scholar 

  71. Hyndman, R., Booth, H., Tickle, L., Maindonald, J., Wood, S., & R Core Team. (2023). demography: Forecasting mortality, migration and population data. Retrieved August 5, 2023, from https://pkg.robjhyndman.com/demography/, https://github.com/robjhyndman/demography. R package version 2.0

  72. Hyndman, J., & Shang, H. L. (2013). ftsa: functional time series analysis. Retrieved August 5, 2023, from http://cran.r-project.org/package=ftsa. R package version 3.8

  73. Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., Kuroptev, K., & Wild, M. O. (2023). forecast: forecasting functions for time series and linear models. Retrieved August 5, 2023, from https://pkg.robjhyndman.com/forecast/, R package version 8.21

Download references

Author information

Authors and Affiliations

Authors

Contributions

Azizur Rahman wrote the main manuscript text, prepared figures and tables, and analyzed the data by writing R code. N. M. Refat reviewed the manuscript and contributed to the data collection section.

Corresponding author

Correspondence to Azizur Rahman.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Reproducibility

We used R [70], along with demography [71], ftsa [72], and forecast [73] packages.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Nasher, N.M.R. Forecasting Hourly Ozone Concentration Using Functional Time Series Model—A Case Study in the Coastal Area of Bangladesh. Environ Model Assess 29, 125–134 (2024). https://doi.org/10.1007/s10666-023-09928-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-023-09928-8

Keywords

Navigation