Skip to main content

Advertisement

Log in

Integrating UAV and Freely Available Space-Borne Data to Describe Tree Decline Across Semi-arid Mountainous Forests

  • Research
  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Tree decline is a highly complex process and is inherently a function of manifold climatic, physiologic, and anthropogenic factors. Monitoring decline processes and their underlying dynamics primarily entails identifying their location and intensity across different ecosystems, for which airborne and satellite remote sensing approaches offer cost-effective and spatially explicit alternatives to field methods. Consumer-grade unmanned aerial vehicles (UAVs) can barely be used as standalone means for large-area monitoring due to their constrains in spatial and spectral domains. However, they could effectively be integrated alongside satellite data to unlock their information for subsequent upscaling on landscape level. We designed a novel two-step workflow to describe the severity of tree decline by linking UAV-RGB information to space-borne multispectral and digital elevation model (DEM) data over 15 forest sites dominated by Persian oak across the latitudinal gradient of Zagros Forests in western Iran. We display how to 1) leverage UAV as reference data across multiple structurally different Persian oak-dominated sites in semi-arid Zagros mountains of Iran; 2) link UAV, Copernicus DEM, and Sentinel-2 data to retrieve decline information within a model-driven context; and 3) analyze the sensitivity of models by means of a global variance-based sensitivity analysis. Results suggested a high association between UAV and field data on the intensity of decline, which enabled using sampled UAV data as reference to estimate the decline severity using space-borne data by means of semi-parametric generalized additive model (GAM) and non-parametric random forest (RF) approaches. Conclusively, this study provided a baseline for multi-scale analysis of tree decline using budget and partially free data sources, which can be of high scientific and practical assets for monitoring in remote, sparse, mountainous, and continuously degrading forest areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The associated R codes could be available via a Github repository or upon a personal reasonable request.

References

  1. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.

    Article  Google Scholar 

  2. Jordan, M. O. (2015). C depletion and tree dieback in young peach trees: A possible consequence of N shortage? Annals of forest science, 72(5), 529–537. https://doi.org/10.1007/s13595-015-0466-9

    Article  Google Scholar 

  3. Mueller-Dombois, D. (1988). Forest decline and dieback—a global ecological problem. Trends in Ecology & Evolution, 3(11), 310–312. https://doi.org/10.1016/0169-5347(88)90108-5

    Article  CAS  Google Scholar 

  4. Smith, W. H. (1990). Forest dieback/decline: a regional response to excessive air pollution exposure. Air pollution and forests (pp. 501–524). New York, NY: Springer. https://doi.org/10.1007/978-1-4612-3296-4_18

    Chapter  Google Scholar 

  5. Franklin, J. F., Shugart, H. H., & Harmon, M. E. (1987). Tree death as an ecological process. BioScience, 37(8), 550–556.

    Article  Google Scholar 

  6. Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R., & Pockman, W. T. (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, cell & environment, 37(1), 153–161. https://doi.org/10.1111/pce.12141

    Article  CAS  Google Scholar 

  7. Attarod, P., Sadeghi, S. M. M., Pypker, T. G., & Bayramzadeh, V. (2017). Oak trees decline; a sign of climate variability impacts in the west of Iran. Caspian Journal of Environmental Sciences, 15(4), 373–384. https://doi.org/10.22124/cjes.2017.2662

    Article  Google Scholar 

  8. Heitzman, E., Grell, A., Spetich, M., & Starkey, D. (2007). Changes in forest structure associated with oak decline in severely impacted areas of northern Arkansas. Southern Journal of Applied Forestry, 31(1), 17–22. https://doi.org/10.1093/sjaf/31.1.17

    Article  Google Scholar 

  9. Johnson, P. S., Shifley, S. R., & Rogers, R. (2002). The ecology and silviculture of oaks (p. 503). New York: CABI Publishing.

    Book  Google Scholar 

  10. Führer, E. R. W. I. N. (1998). Oak decline in Central Europe: a synopsis of hypotheses. Proceedings of population dynamics, impacts, and integrated management of forest defoliating insects. USDA Forest Service General Technical Report NE-247, 7–24.

  11. Sohar, K., Helama, S., Läänelaid, A., Raisio, J., & Tuomenvirta, H. (2014). Oak decline in a southern Finnish forest as affected by a drought sequence. Geochronometria, 41(1), 92–103. https://doi.org/10.2478/s13386-013-0137-2

    Article  Google Scholar 

  12. Thomas, F. M. (2008). Recent advances in cause-effect research on oak decline in Europe. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3(37), 1–12.

    Google Scholar 

  13. Pourhashemi, M., & Sadeghi, S. M. M. (2020). A review on ecological causes of oak decline phenomenon in forests of Iran. Ecology of Iranian Forest, 8(16), 148–164. http://ifej.sanru.ac.ir/article-1-340-en.html

  14. Rostamian, M. (2017). The relationship between oak charcoal disease (Biscogniauxia mediterranea) and borer beetles in the Zagros forests, Khorram Abad. Journal of Wood and Forest Science and Technology, 24(3), 110–142. https://doi.org/10.22069/jwfst.2017.12843.1662

    Article  Google Scholar 

  15. Pourhashemi, M., Jahanbazi Goujani, H., Hoseinzadeh, J., Bordbar, S. K., Iranmanesh, Y., & Khodakarami, Y. (2017). The history of oak decline in Zagros forests. Iran Nature, 2(1), 37–30. https://doi.org/10.22092/irn.2017.109535

    Article  Google Scholar 

  16. Alexander, J., & Lee, C. A. (2010). Lessons learned from a decade of sudden oak death in California: Evaluating local management. Environmental Management, 46(3), 315–328. https://doi.org/10.1007/s00267-010-9512-4

    Article  Google Scholar 

  17. Fallah, A., & Haidari, M. (2018). Investigation of Oak decline in diameter classes in Sarab-Kazan forests of Ilam. Iranian Journal of Forest, 9(4), 499–510.

    Google Scholar 

  18. Asner, G. P., Nepstad, D., Cardinot, G., & Ray, D. (2004). Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proceedings of the National Academy of Sciences, 101(16), 6039–6044. https://doi.org/10.1073/pnas.0400168101

    Article  CAS  Google Scholar 

  19. Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote sensing of environment, 30(3), 271–278. https://doi.org/10.1016/0034-4257(89)90069-2

    Article  Google Scholar 

  20. Anderegg, W. R., Konings, A. G., Trugman, A. T., Yu, K., Bowling, D. R., Gabbitas, R., & Zenes, N. (2018). Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 561(7724), 538–541. https://doi.org/10.1038/s41586-018-0539-7

    Article  CAS  Google Scholar 

  21. Konings, A. G., Yu, Y., Xu, L., Yang, Y., Schimel, D. S., & Saatchi, S. S. (2017). Active microwave observations of diurnal and seasonal variations of canopy water content across the humid African tropical forests. Geophysical Research Letters, 44(5), 2290–2299. https://doi.org/10.1002/2016GL072388

    Article  Google Scholar 

  22. White, J. C., Coops, N. C., Hilker, T., Wulder, M. A., & Carroll, A. L. (2007). Detecting mountain pine beetle red attack damage with EO-1 Hyperion moisture indices. International Journal of Remote Sensing, 28(10), 2111–2121. https://doi.org/10.1080/01431160600944028

    Article  Google Scholar 

  23. Wulder, M. A., Dymond, C. C., White, J. C., Leckie, D. G., & Carroll, A. L. (2006). Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. Forest Ecology and management, 221(1–3), 27–41. https://doi.org/10.1016/j.foreco.2005.09.021

    Article  Google Scholar 

  24. Rock, B. N., Hoshizaki, T., & Miller, J. R. (1988). Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sensing of Environment, 24(1), 109–127. https://doi.org/10.1016/0034-4257(88)90008-9

    Article  Google Scholar 

  25. Huang, C. Y., Anderegg, W. R., & Asner, G. P. (2019). Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to canopy structure. Remote Sensing of Environment, 231, 111233. https://doi.org/10.1016/j.rse.2019.111233

  26. Martin, R. E., Asner, G. P., Francis, E., Ambrose, A., Baxter, W., Das, A. J., & Stephenson, N. L. (2018). Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought. Forest Ecology and Management, 419, 279–290. https://doi.org/10.1016/j.foreco.2017.12.002

    Article  Google Scholar 

  27. Anderegg, W. R., Kane, J. M., & Anderegg, L. D. (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature climate change, 3(1), 30–36. https://doi.org/10.1038/nclimate1635

    Article  Google Scholar 

  28. Huang, C. Y., & Anderegg, W. R. (2014). Vegetation, land surface brightness, and temperature dynamics after aspen forest die-off. Journal of Geophysical Research: Biogeosciences, 119(7), 1297–1308. https://doi.org/10.1002/2013JG002489

    Article  Google Scholar 

  29. Gallego, F. J., De Algaba, A. P., & Fernandez-Escobar, R. (1999). Etiology of oak decline in Spain. European Journal of Forest Pathology, 29(1), 17–27. https://doi.org/10.1046/j.1439-0329.1999.00128.x

    Article  Google Scholar 

  30. Goodwin, N. R., Coops, N. C., Wulder, M. A., Gillanders, S., Schroeder, T. A., & Nelson, T. (2008). Estimation of insect infestation dynamics using a temporal sequence of Landsat data. Remote sensing of environment, 112(9), 3680–3689. https://doi.org/10.1016/j.rse.2008.05.005

    Article  Google Scholar 

  31. Skakun, R. S., Wulder, M. A., & Franklin, S. E. (2003). Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sensing of Environment, 86(4), 433–443. https://doi.org/10.1016/S0034-4257(03)00112-3

    Article  Google Scholar 

  32. Stimson, H. C., Breshears, D. D., Ustin, S. L., & Kefauver, S. C. (2005). Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sensing of Environment, 96(1), 108–118. https://doi.org/10.1016/j.rse.2004.12.007

    Article  Google Scholar 

  33. Cook, B. D., Corp, L. A., Nelson, R. F., Middleton, E. M., Morton, D. C., McCorkel, J. T., Masek, J. G., Ranson, K. J., Ly, V., & Montesano, P. M. (2013). NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sensing, 5, 4045.

    Article  Google Scholar 

  34. Gamon, J. A., Penuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of environment, 41(1), 35–44.

    Article  Google Scholar 

  35. Ahern, F. J. (1988). The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. International Journal of Remote Sensing, 9(9), 1451–1468. https://doi.org/10.1080/01431168808954952

    Article  Google Scholar 

  36. Chavana‐Bryant, C., Malhi, Y., Wu, J., Asner, G. P., Anastasiou, A., Enquist, B. J., & Gerard, F. F. (2017). Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. New Phytologist, 214(3), 1049–1063. https://doi.org/10.1111/nph.13853

    Article  CAS  Google Scholar 

  37. Zarco-Tejada, P. J., Hornero, A., Beck, P. S. A., Kattenborn, T., Kempeneers, P., & Hernández-Clemente, R. (2019). Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline. Remote sensing of environment, 223, 320–335. https://doi.org/10.1016/j.rse.2019.01.031

    Article  CAS  Google Scholar 

  38. Zakeri, S., & Fallah Shamsi, S. R. (2014). An investigation on Persian oak (Quercus brantii Lindl) single tree defoliation mapping, using rapid eye and ster-L1B satellite imageries. Iranian Journal of Forest, 5(4), 443–456.

    Google Scholar 

  39. Carlquist, S. (2001). Comparative Wood Anatomy. Springer.

    Book  Google Scholar 

  40. Davari, M., Peyghami, E., Javanshir, A., & Ebrahimi, T. (2003). Investigating the causes of of oak decline (Quercus macranthera) in Hatam-Beyg Forest (Ghinraje). Meshkin Shahr. Agriculture Knowledge, 13(3), 1–14.

    Google Scholar 

  41. Hart, S. J., & Veblen, T. T. (2015). Detection of spruce beetle-induced tree mortality using high-and medium-resolution remotely sensed imagery. Remote Sensing of Environment, 168, 134–145. https://doi.org/10.1016/j.rse.2015.06.015

    Article  Google Scholar 

  42. Fassnacht, F. E., Latifi, H., Ghosh, A., Joshi, P. K., & Koch, B. (2014). Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sensing of Environment, 140, 533–548. https://doi.org/10.1016/j.rse.2013.09.014

    Article  Google Scholar 

  43. Dash, J. P., Watt, M. S., Pearse, G. D., Heaphy, M., & Dungey, H. S. (2017). Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 1–14. https://doi.org/10.1016/j.isprsjprs.2017.07.007

    Article  Google Scholar 

  44. Puliti, S., Ene, L. T., Gobakken, T., & Næsset, E. (2017). Use of partial-coverage UAV data in sampling for large scale forest inventories. Remote Sensing of Environment, 194, 115–126. https://doi.org/10.1016/j.rse.2017.03.019

    Article  Google Scholar 

  45. Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7(3), 62. https://doi.org/10.3390/f7030062

    Article  Google Scholar 

  46. Michez, A., Piégay, H., Lisein, J., Claessens, H., & Lejeune, P. (2016). Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environmental monitoring and assessment, 188(3), 1–19. https://doi.org/10.1007/s10661-015-4996-2

    Article  Google Scholar 

  47. Cardil, A., Vepakomma, U., & Brotons, L. (2017). Assessing pine processionary moth defoliation using unmanned aerial systems. Forests, 8(10), 402. https://doi.org/10.3390/f8100402

    Article  Google Scholar 

  48. Yuan, C., Liu, Z., & Zhang, Y. (2017). Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles. Journal of Intelligent & Robotic Systems, 88(2), 635–654. https://doi.org/10.1007/s10846-016-0464-7

    Article  Google Scholar 

  49. Mokroš, M., Výbošťok, J., Merganič, J., Hollaus, M., Barton, I., Koreň, M., & Čerňava, J. (2017). Early stage forest windthrow estimation based on unmanned aircraft system imagery. Forests, 8(9), 306. https://doi.org/10.3390/f8090306

    Article  Google Scholar 

  50. Röder, M., Latifi, H., Hill, S., Wild, J., Svoboda, M., Brůna, J., & Heurich, M. (2018). Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests. International Journal of Remote Sensing, 39(15–16), 5288–5309. https://doi.org/10.1080/01431161.2018.1441568

    Article  Google Scholar 

  51. Yu, K., Hao, Z., Post, C. J., Mikhailova, E. A., Lin, L., Zhao, G., & Liu, J. (2022). Comparison of classical methods and mask R-CNN for automatic tree detection and mapping using UAV imagery. Remote Sensing, 14(2), 295. https://doi.org/10.3390/rs14020295

    Article  Google Scholar 

  52. Ghasemi, M., Latifi, H., & Pourhashemi, M. (2022). A novel method for detecting and delineating coppice trees in UAV images to monitor tree decline. Remote Sensing, 14(23), 5910. https://doi.org/10.3390/rs14235910

    Article  Google Scholar 

  53. Dash, J. P., Pearse, G. D., & Watt, M. S. (2018). UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sensing, 10(8), 1216. https://doi.org/10.3390/rs10081216

    Article  Google Scholar 

  54. Fraser, R. H., Van der Sluijs, J., & Hall, R. J. (2017). Calibrating satellite-based indices of burn severity from UAV-derived metrics of a burned boreal forest in NWT. Canada. Remote Sensing, 9(3), 279. https://doi.org/10.3390/rs9030279

    Article  Google Scholar 

  55. Puliti, S., Saarela, S., Gobakken, T., Ståhl, G., & Næsset, E. (2018). Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote sensing of environment, 204, 485–497. https://doi.org/10.1016/j.rse.2017.10.007

    Article  Google Scholar 

  56. Abdollahnejad, A., Panagiotidis, D., & Surový, P. (2018). Estimation and extrapolation of tree parameters using spectral correlation between UAV and Pléiades data. Forests, 9(2), 85. https://doi.org/10.3390/f9020085

    Article  Google Scholar 

  57. Fassnacht, F. E., Schmidt-Riese, E., Kattenborn, T., & Hernández, J. (2021). Explaining Sentinel 2-based dNBR and RdNBR variability with reference data from the bird’s eye (UAS) perspective. International Journal of Applied Earth Observation and Geoinformation, 95, 102262. https://doi.org/10.1016/j.jag.2020.102262

  58. Epstein, H. E., Raynolds, M. K., Walker, D. A., Bhatt, U. S., Tucker, C. J., & Pinzon, J. E. (2012). Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters, 7(1), 015506. https://doi.org/10.1088/1748-9326/7/1/015506

  59. Walker, D. A., Daniëls, F. J. A., Alsos, I., Bhatt, U. S., Breen, A. L., Buchhorn, M., & Webber, P. J. (2016). Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data. Environmental Research Letters, 11(5), 055005. https://doi.org/10.1088/1748-9326/11/5/055005

  60. Tsai, C. H., & Lin, Y. C. (2017). An accelerated image matching technique for UAV orthoimage registration. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 130–145. https://doi.org/10.1016/j.isprsjprs.2017.03.017

    Article  Google Scholar 

  61. Kattenborn, T., Fassnacht, F. E., & Schmidtlein, S. (2019). Differentiating plant functional types using reflectance: Which traits make the difference? Remote Sensing in Ecology and Conservation, 5(1), 5–19. https://doi.org/10.1002/rse2.86

    Article  Google Scholar 

  62. Hawryło, P., Bednarz, B., Wężyk, P., & Szostak, M. (2018). Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2. European Journal of Remote Sensing, 51(1), 194–204. https://doi.org/10.1080/22797254.2017.1417745

    Article  Google Scholar 

  63. Sadeghi, M., Malekian, M., & Khodakarami, L. (2017). Forest losses and gains in Kurdistan province, western Iran: Where do we stand? The Egyptian Journal of Remote Sensing and Space Science, 20(1), 51–59. https://doi.org/10.1016/j.ejrs.2016.07.001

    Article  Google Scholar 

  64. FAO. (2015). Guide for country reporting for forest resource assessment (FRA) 2015. Retrieved February 23, 2021, from http://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/

  65. Ghazanfari, H., Namiranian, M., Sobhani, H., & Mohajer, R. M. (2004). Traditional forest management and its application to encourage public participation for sustainable forest management in the northern Zagros Mountains of Kurdistan Province. Iran. Scandinavian Journal of forest research, 19(S4), 65–71. https://doi.org/10.1080/14004080410034074

    Article  Google Scholar 

  66. Jazirehi, M. H., & Ebrahimi, R. M.,  (2003). Silviculture in Zagros 1 University of Tehran 978-9640347584.

  67. DJI. (2016). “Phantom 4 Pro user manual.” 69 p. Retrieved February 23, 2021, from https://www.dji.com/phantom-4pro/info#downloads

  68. Agisoft. (2021). Agisoft Metashape user manual: professional edition, Version 1.7.  Retrieved February 23, 2021, from https://www.agisoft.com/downloads/user-manuals/

  69. Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote sensing of Environment, 80(1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9

    Article  Google Scholar 

  70. Zheng, H., Cheng, T., Zhou, M., Li, D., Yao, X., Tian, Y., & Zhu, Y. (2019). Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precision Agriculture, 20(3), 611–629. https://doi.org/10.1007/s11119-018-9600-7

    Article  Google Scholar 

  71. Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine vision. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 1079–1083). Kobe, Japan.

  72. Wan, L., Li, Y., Cen, H., Zhu, J., Yin, W., Wu, W., & He, Y. (2018). Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sensing, 10(9), 1484. https://doi.org/10.3390/rs10091484

    Article  Google Scholar 

  73. Latifi, H., Dahms, T., Beudert, B., Heurich, M., Kübert, C., & Dech, S. (2018). Synthetic RapidEye data used for the detection of area-based spruce tree mortality induced by bark beetles. GIScience & Remote Sensing, 55(6), 839–859. https://doi.org/10.1080/15481603.2018.1458463

    Article  Google Scholar 

  74. Imanyfar, S., Hasanlou, M., & Mirzaei Zadeh, V. (2019). Mapping oak decline through long-term analysis of time series of satellite images in the forests of Malekshahi. Iran. International Journal of Remote Sensing, 40(23), 8705–8726. https://doi.org/10.1080/01431161.2019.1620375

    Article  Google Scholar 

  75. Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35(2–3), 161–173.

    Article  Google Scholar 

  76. Guth, P. L., & Geoffroy, T. M. (2021). LiDAR point cloud and ICESat-2 evaluation of 1 second global digital elevation models: Copernicus wins. Transactions in GIS, 25(5), 2245–2261. https://doi.org/10.1111/tgis.12825

    Article  Google Scholar 

  77. Butcher, B., & Smith, B. J. (2020). Feature engineering and selection: a practical approach for predictive models. Boca Raton, FL: Chapman & Hall/CRC Press. by Max Kuhn and Kjell Johnson 2019, xv+ 297 pp., $79.95 (H), ISBN: 978-1-13-807922-9.

    Google Scholar 

  78. Steyerberg, E. W., Eijkemans, M. J., & Habbema, J. D. F. (1999). Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis. Journal of clinical epidemiology, 52(10), 935–942. https://doi.org/10.1016/S0895-4356(99)00103-1

    Article  CAS  Google Scholar 

  79. Whittingham, M. J., Stephens, P. A., Bradbury, R. B., & Freckleton, R. P. (2006). Why do we still use stepwise modelling in ecology and behaviour? Journal of animal ecology, 75(5), 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x

    Article  Google Scholar 

  80. Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716–723.

    Article  Google Scholar 

  81. Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. Chapman & Hall/CRC. ISBN 978–0–412–34390–2.

    Google Scholar 

  82. Wood, S. N. (2017). Generalized additive models: An introduction with R. CRC Press.

    Book  Google Scholar 

  83. Rhys, H. (2020). Machine learning with R, the tidyverse, and mlr. Simon and Schuster.

    Google Scholar 

  84. Houborg, R., & McCabe, M. F. (2018). A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing, 135, 173–188. https://doi.org/10.1016/j.isprsjprs.2017.10.004

    Article  Google Scholar 

  85. Shah, S. H., Angel, Y., Houborg, R., Ali, S., & McCabe, M. F. (2019). A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sensing, 11(8), 920. https://doi.org/10.3390/rs11080920

    Article  Google Scholar 

  86. Ramezan, A., & C., A Warner, T., & E Maxwell, A. (2019). Evaluation of sampling and cross-validation tuning strategies for regional-scale machine learning classification. Remote Sensing, 11(2), 185. https://doi.org/10.3390/rs11020185

    Article  Google Scholar 

  87. Brenning, A. (2012, July). Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest. 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 5372–5375). IEEE. https://doi.org/10.1109/IGARSS.2012.6352393

  88. Sexton, J. O., Song, X. P., Feng, M., Noojipady, P., Anand, A., Huang, C., & Townshend, J. R. (2013). Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth, 6(5), 427–448. https://doi.org/10.1080/17538947.2013.786146

    Article  Google Scholar 

  89. Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313. https://doi.org/10.1175/1520-0477(1982)063%3C1309:SCOTEO%3E2.0.CO;2

    Article  Google Scholar 

  90. Sexton, J. O., Noojipady, P., Anand, A., Song, X. P., McMahon, S., Huang, C., & Townshend, J. R. (2015). A model for the propagation of uncertainty from continuous estimates of tree cover to categorical forest cover and change. Remote Sensing of Environment, 156, 418–425. https://doi.org/10.1016/j.rse.2014.08.038

    Article  Google Scholar 

  91. Cameron, A. C., & Windmeijer, F. A. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of econometrics, 77(2), 329–342. https://doi.org/10.1016/S0304-4076(96)01818-0

    Article  Google Scholar 

  92. Saltelli, A. (2000). What is sensitivity analysis? In A. Saltelli, K. Chan, & M. Scott (Eds.), Sensitivity analysis (p. 3e14). Chichester: Wiley.

    Google Scholar 

  93. Nossent, J., Elsen, P., & Bauwens, W. (2011). Sobol’sensitivity analysis of a complex environmental model. Environmental Modelling & Software, 26(12), 1515–1525. https://doi.org/10.1016/j.envsoft.2011.08.010

    Article  Google Scholar 

  94. Sobol’, I. Y. M. (1990). On sensitivity estimation for nonlinear mathematical models. Matematicheskoe modelirovanie, 2(1), 112–118.

    Google Scholar 

  95. Tang, Y., Reed, P., Wagener, T., & Van Werkhoven, K. (2007). Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences, 11(2), 793–817.

    Article  Google Scholar 

  96. Pappenberger, F., Beven, K. J., Ratto, M., & Matgen, P. (2008). Multi-method global sensitivity analysis of flood inundation models. Advances in water resources, 31(1), 1–14. https://doi.org/10.1016/j.advwatres.2007.04.009

    Article  Google Scholar 

  97. Cibin, R., Sudheer, K. P., & Chaubey, I. (2010). Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes: An International Journal, 24(9), 1133–1148. https://doi.org/10.1002/hyp.7568

    Article  Google Scholar 

  98. Gränzig, T., Fassnacht, F. E., Kleinschmit, B., & Förster, M. (2021). Mapping the fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach. International Journal of Applied Earth Observation and Geoinformation, 96, 102281. https://doi.org/10.1016/j.jag.2020.102281

    Article  Google Scholar 

  99. Riihimäki, H., Luoto, M., & Heiskanen, J. (2019). Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data. Remote Sensing of Environment, 224, 119–132. https://doi.org/10.1016/j.rse.2019.01.030

    Article  Google Scholar 

  100. Rhyma, P. P., Norizah, K., Hamdan, O., Faridah-Hanum, I., & Zulfa, A. W. (2020). Integration of normalised different vegetation index and soil-adjusted vegetation index for mangrove vegetation delineation. Remote Sensing Applications: Society and Environment, 17, 100280. https://doi.org/10.1016/j.rsase.2019.100280

    Article  Google Scholar 

  101. Stone, C., & Mohammed, C. (2017). Application of remote sensing technologies for assessing planted forests damaged by insect pests and fungal pathogens: a review. Current Forestry Reports, 3, 75–92.

    Article  Google Scholar 

  102. Pause, M., Schweitzer, C., Rosenthal, M., Keuck, V., Bumberger, J., Dietrich, P., & Lausch, A. (2016). In situ/remote sensing integration to assess forest health – a review. Remote Sensing, 8(6), 471. https://doi.org/10.3390/rs8060471

    Article  Google Scholar 

  103. Vastaranta, M., Wulder, M. A., White, J. C., Pekkarinen, A., Tuominen, S., Ginzler, C., & Hyyppä, H. (2013). Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Canadian Journal of Remote Sensing, 39(5), 382–395. https://doi.org/10.5589/m13-046

    Article  Google Scholar 

  104. Finch, J. P., Brown, N., Beckmann, M., Denman, S., & Draper, J. (2021). Index measures for oak decline severity using phenotypic descriptors. Forest Ecology and Management, 485, 118948. https://doi.org/10.1016/j.foreco.2021.118948

    Article  Google Scholar 

  105. Lussem, U., Bolten, A., Gnyp, M. L., Jasper, J., & Bareth, G. (2018). Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in grassland. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 42, 1215–1219. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018

    Article  Google Scholar 

  106. Zarco-Tejada, P. J., Hornero, A., Hernández-Clemente, R., & Beck, P. S. A. (2018). Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 137, 134–148. https://doi.org/10.1016/j.isprsjprs.2018.01.017

    Article  CAS  Google Scholar 

  107. Haghighian, F., Yousefi, S., & Keesstra, S. (2022). Identifying tree health using sentinel-2 images: a case study on Tortrix viridana L. infected oak trees in Western Iran. Geocarto International, 37(1), 304–314. https://doi.org/10.1080/10106049.2020.1716397

    Article  Google Scholar 

  108. Hoy, E. E., French, N. H., Turetsky, M. R., Trigg, S. N., & Kasischke, E. S. (2008). Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. International Journal of Wildland Fire, 17(4), 500–514. https://doi.org/10.1071/WF08107

    Article  Google Scholar 

  109. Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C., & Fassnacht, F. E. (2019). UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote sensing of environment, 227, 61–73. https://doi.org/10.1016/j.rse.2019.03.025

    Article  Google Scholar 

  110. Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16(1), 65–70.

    Article  Google Scholar 

  111. Xiaoqin, W., Miaomiao, W., Shaoqiang, W. and Yundong, W. (2015). Extraction of vegetation information from visible unmanned aerial vehicle images. Transactions of the Chinese Society of Agricultural Engineering, 31(5). https://doi.org/10.3969/j.issn.1002-6819.2015.05.022

  112. Kawashima, S., & Nakatani, M. (1998). An algorithm for estimating chlorophyll content in leaves using a video camera. Annals of Botany, 81(1), 49–54. https://doi.org/10.1006/anbo.1997.0544

    Article  Google Scholar 

  113. Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79–87. https://doi.org/10.1016/j.jag.2015.02.012

    Article  Google Scholar 

  114. Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38(1), 259–269.

    Article  Google Scholar 

  115. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  116. Bannari, A., Morin, D., Bonn, F., & Huete, A. (1995). A review of vegetation indices. Remote sensing reviews, 13(1–2), 95–120.

    Article  Google Scholar 

  117. Pinty, B., & Verstraete, M. M. (1992). GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio, 101, 15–20.

    Article  Google Scholar 

  118. Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426.

    Article  Google Scholar 

  119. Ceccato, P., Flasse, S., & Gregoire, J. M. (2002). Designing a spectral index to estimate vegetation water content from remote sensing data: part 2. Validation and applications. Remote Sensing of Environment, 82(2–3), 198–207.

    Article  Google Scholar 

  120. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to diverse field crews in three provinces of Kermanshah, Chaharmahal-and-Bakhtiari, and Fars who collected the field data on oak decline. We are particularly grateful for the assistance of Dr. Yaghoub Iranmanesh, Dr. Hassan Jahanbazi, Dr. Seyed Kazem Bordbar, Dr. Mehrdad Zarafshar, and Mr. Habibollah Rahimi at the provincial bureaus of the Iranian Research Institute of Forests and Rangelands (RIFR), as well as our patient driver Mr. Qarliqi and our GPS assistants Mr. Bahavar and Mr. Sabaei. This research was conducted within the Research Lab “Remote Sensing for Ecology and Ecosystem Conservation (RSEEC)” of the KNTU (Link. https://www.researchgate.net/lab/Research-Lab-Remote-Sensing-for-Ecology-and-Ecosystem-Conservation-RSEEC-Hooman-Latifi).

Funding

The UAV and GPS measurement campaigns were logistically supported by the National Zagros Forests Monitoring Project of the RIFR (project no. 01–09-09–047-97012).

Author information

Authors and Affiliations

Authors

Contributions

M.G, H.L. and M.P. designed this research and the final version of the paper. M.G. implemented the methodology and carried out the data analysis. H.L. was the main point of contact for supervision, collected the input field as well as the UAV data across all sites and partially wrote and commented the manuscript. M.P was the main point of contact regarding oak decline, partially supervised the study and wrote the manuscript. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Hooman Latifi.

Ethics declarations

Ethics Approval

This is not applicable.

Consent to Participate

This is not applicable.

Consent for Publication

This is not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Latifi, H. & Pourhashemi, M. Integrating UAV and Freely Available Space-Borne Data to Describe Tree Decline Across Semi-arid Mountainous Forests. Environ Model Assess (2023). https://doi.org/10.1007/s10666-023-09911-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10666-023-09911-3

Keywords

Navigation