Skip to main content

Advertisement

Log in

Evaluating Air Quality Status in Chicago: Application of Street View Imagery and Urban Climate Sensors

  • Research
  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Cities worldwide have initiated the installation of urban climate sensors to monitor air quality in real time and take proactive measures against the growing threat of climate change. This study focuses on the city of Chicago and utilizes Microsoft’s recently launched Project Eclipse sensors to evaluate air quality status. We extracted surrounding land use features near the installed sensors, integrating street view images from Google Street View (GSV) with conventional land use extraction toolkits. Principal component analysis (PCA) was conducted to decompose spatial information and evaluate the unique characteristics of using street view imagery. Additionally, we integrated XGBoost machine learning regression analysis and SHapley Additive exPlanations (SHAP) value calculation to investigate the impact of determinants on air quality. Analysis results indicated that the measured air pollution exposure from the sensors was consistent with the city’s predefined values, except for the Northern intersection of West Belmont Avenue, which reported critical air quality issues. The regression analysis and SHAP calculation revealed significant differences in the impact of land use on air quality between the intersection of West Belmont Avenue and random observations. The city and local government agencies should address the existing built environment and land use conditions in the North to mitigate potential harm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

The data used in this study are openly available. OpenAPI to access Project Eclipse was obtained from the Microsoft research team.

References

  1. Portier, C., Thigpen Tart, K., Carter, S., Dilworth, C., Grambsch, A., Gohlke, J., Hess, J., Howard, S., Luber, G., Lutz, J., Maslak, T., Radtke, M., Rosenthal, J., Rowles, T., Sandifer, P., Scheraga, J., Strickman, D., Trtanj, J., & Whung, P.-Y. (2010). A human health perspective on climate change: A report outlining research needs on the human health effects of climate change. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1002272

    Article  Google Scholar 

  2. Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Beagley, J., Belesova, K., Boykoff, M., Byass, P., Cai, W., Campbell-Lendrum, D., Capstick, S., Chambers, J., Coleman, S., Dalin, C., Daly, M., Dasandi, N., Dasgupta, S., Davies, M., Di Napoli, C., & Costello, A. (2021). The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. The Lancet, 397(10269), 129–170. https://doi.org/10.1016/S0140-6736(20)32290-X

    Article  Google Scholar 

  3. Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 51–63. https://doi.org/10.1016/j.atmosenv.2008.09.051

    Article  CAS  Google Scholar 

  4. Plageras, A. P., Psannis, K. E., Stergiou, C., Wang, H., & Gupta, B. B. (2018). Efficient IoT-based sensor BIG Data collection–Processing and analysis in smart buildings. Future Generation Computer Systems, 82, 349–357. https://doi.org/10.1016/j.future.2017.09.082

    Article  Google Scholar 

  5. Lee, H., Choi, S., & Jiao, J. (2021). Examining the COVID-19 effects on travel behavior using smart IoT sensors: A case study of smart city planning in Gangnam, Seoul. International Journal of Sustainable Building Technology and Urban Development, 12(4), 347–362. https://doi.org/10.22712/SUSB.20210029

  6. Lytras, M. D., & Visvizi, A. (2018). Who uses smart city services and what to make of it: Toward interdisciplinary smart cities research. Sustainability, 10(6), 1998. https://doi.org/10.3390/su10061998

    Article  Google Scholar 

  7. Gao, J., & Zha, Y. (2010). Meteorological influence on predicting air pollution from MODIS-derived aerosol optical thickness: A case study in Nanjing, China. Remote Sensing. https://doi.org/10.3390/rs2092136

    Article  Google Scholar 

  8. Iskandaryan, D., Ramos, F., & Trilles, S. (2020). Air quality prediction in smart cities using machine learning technologies based on sensor data: A review. Applied Sciences, 10(7), 2401. https://doi.org/10.3390/app10072401

    Article  CAS  Google Scholar 

  9. West, J. J., Smith, S. J., Silva, R. A., Naik, V., Zhang, Y., Adelman, Z., Fry, M. M., Anenberg, S., Horowitz, L. W., & Lamarque, J.-F. (2013). Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nature Climate Change, 3(10), 885–889. https://doi.org/10.1038/nclimate2009

    Article  CAS  Google Scholar 

  10. Wang, J. C. (2019). Analysis of energy use intensity and greenhouse gas emissions for universities in Taiwan. Journal of Cleaner Production, 241, 118363. https://doi.org/10.1016/j.jclepro.2019.118363

    Article  Google Scholar 

  11. Heald, C. L., & Spracklen, D. V. (2015). Land use change impacts on air quality and climate. Chemical Reviews, 115(10), 4476–4496. https://doi.org/10.1021/cr500446g

    Article  CAS  Google Scholar 

  12. McCarty, J., & Kaza, N. (2015). Urban form and air quality in the United States. Landscape and Urban Planning, 139, 168–179. https://doi.org/10.1016/j.landurbplan.2015.03.008

    Article  Google Scholar 

  13. Zou, B., Xu, S., Sternberg, T., & Fang, X. (2016). Effect of land use and cover change on air quality in urban sprawl. Sustainability. https://doi.org/10.3390/su8070677

    Article  Google Scholar 

  14. Hewitt, C. N., Ashworth, K., & MacKenzie, A. R. (2020). Using green infrastructure to improve urban air quality (GI4AQ). Ambio, 49(1), 62–73. https://doi.org/10.1007/s13280-019-01164-3

    Article  Google Scholar 

  15. Lee, M., Kloog, I., Chudnovsky, A., Lyapustin, A., Wang, Y., Melly, S., Coull, B., Koutrakis, P., & Schwartz, J. (2016). Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011. Journal of Exposure Science & Environmental Epidemiology, 26(4), 377–384. https://doi.org/10.1038/jes.2015.41

    Article  CAS  Google Scholar 

  16. Xu, G., Jiao, L., Zhao, S., Yuan, M., Li, X., Han, Y., Zhang, B., & Dong, T. (2016). Examining the impacts of land use on air quality from a spatio-temporal perspective in Wuhan. China. Atmosphere, 7(5), 62. https://doi.org/10.3390/atmos7050062

    Article  CAS  Google Scholar 

  17. Henneman, L. R. F., Shen, H., Hogrefe, C., Russell, A. G., & Zigler, C. M. (2021). Four decades of United States mobile source pollutants: Spatial–temporal trends assessed by ground-based monitors, air quality models, and satellites. Environmental Science & Technology, 55(2), 882–892. https://doi.org/10.1021/acs.est.0c07128

    Article  CAS  Google Scholar 

  18. Li, X., Zhang, C., Li, W., Ricard, R., Meng, Q., & Zhang, W. (2015). Assessing street-level urban greenery using Google Street View and a modified green view index. Urban Forestry & Urban Greening, 14(3), 675–685. https://doi.org/10.1016/j.ufug.2015.06.006

    Article  Google Scholar 

  19. Yin, L., & Wang, Z. (2016). Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Applied Geography, 76, 147–153. https://doi.org/10.1016/j.apgeog.2016.09.024

    Article  Google Scholar 

  20. Richards, D. R., & Edwards, P. J. (2017). Quantifying street tree regulating ecosystem services using Google Street View. Ecological Indicators, 77, 31–40. https://doi.org/10.1016/j.ecolind.2017.01.028

    Article  Google Scholar 

  21. Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Aiden, E. L., & Fei-Fei, L. (2017). Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proceedings of the National Academy of Sciences, 114(50), 13108. https://doi.org/10.1073/pnas.1700035114

    Article  CAS  Google Scholar 

  22. Rundle, A. G., Bader, M. D. M., Richards, C. A., Neckerman, K. M., & Teitler, J. O. (2011). Using Google Street View to audit neighborhood environments. American Journal of Preventive Medicine, 40(1), 94–100. https://doi.org/10.1016/j.amepre.2010.09.034

    Article  Google Scholar 

  23. Hara, K., Le, V., & Froehlich, J. (2013). Combining crowdsourcing and google street view to identify street-level accessibility problems. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 631–640. https://doi.org/10.1145/2470654.2470744

  24. Isola, P. D., Bogert, J. N., Chapple, K. M., Israr, S., Gillespie, T. L., & Weinberg, J. A. (2019). Google Street View assessment of environmental safety features at the scene of pedestrian automobile injury. The Journal of Trauma and Acute Care Surgery, 87(1), 82–86. https://doi.org/10.1097/TA.0000000000002338

    Article  Google Scholar 

  25. Ilic, L., Sawada, M., & Zarzelli, A. (2019). Deep mapping gentrification in a large Canadian city using deep learning and Google Street View. PLoS ONE, 14(3), e0212814. https://doi.org/10.1371/journal.pone.0212814

    Article  CAS  Google Scholar 

  26. O’Regan, A. C., Byrne, R., Hellebust, S., & Nyhan, M. M. (2022). Associations between Google Street View-derived urban greenspace metrics and air pollution measured using a distributed sensor network. Sustainable Cities and Society, 87, 104221. https://doi.org/10.1016/j.scs.2022.104221

    Article  Google Scholar 

  27. Messier, K. P., Chambliss, S. E., Gani, S., Alvarez, R., Brauer, M., Choi, J. J., Hamburg, S. P., Kerckhoffs, J., LaFranchi, B., Lunden, M. M., Marshall, J. D., Portier, C. J., Roy, A., Szpiro, A. A., Vermeulen, R. C. H., & Apte, J. S. (2018). Mapping air pollution with Google Street View cars: Efficient approaches with mobile monitoring and land use regression. Environmental Science & Technology, 52(21), 12563–12572. https://doi.org/10.1021/acs.est.8b03395

    Article  CAS  Google Scholar 

  28. Parmar, G., Lakhani, S., & Chattopadhyay, M. K. (2017). An IoT based low cost air pollution monitoring system. 2017 International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE), 524–528.https://doi.org/10.1109/RISE.2017.8378212

  29. Zhao, Y.-L., Tang, J., Huang, H.-P., Wang, Z., Chen, T.-L., Chiang, C.-W., & Chiang, P.-C. (2020). Development of IoT technologies for air pollution prevention and improvement. Aerosol and Air Quality Research, 20(12), 2874–2888. https://doi.org/10.4209/aaqr.2020.05.0255

    Article  CAS  Google Scholar 

  30. Rovira, J., Domingo, J. L., & Schuhmacher, M. (2020). Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Science of The Total Environment, 703, 135538. https://doi.org/10.1016/j.scitotenv.2019.135538

    Article  CAS  Google Scholar 

  31. US EPA, O. (2014, 10. April). NAAQS Table [Other Policies and Guidance]. https://www.epa.gov/criteria-air-pollutants/naaqs-table

  32. Amato, F., Guignard, F., Robert, S., & Kanevski, M. (2020). A novel framework for spatio-temporal prediction of environmental data using deep learning. Scientific Reports, 10(1), 22243. https://doi.org/10.1038/s41598-020-79148-7

    Article  CAS  Google Scholar 

  33. Marble, S. (2018). Everything that can be measured will be measured. Technology|Architecture + Design, 2(2), 127–129. https://doi.org/10.1080/24751448.2018.1497355

    Article  Google Scholar 

  34. Mora, S., Anjomshoaa, A., Benson, T., Duarte, F., & Ratti, C. (2019). Towards large-scale drive-by sensing with multi-purpose city scanner nodes. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 743–748. https://doi.org/10.1109/WF-IoT.2019.8767186

  35. Venter, Z. S., Brousse, O., Esau, I., & Meier, F. (2020). Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sensing of Environment, 242, 111791. https://doi.org/10.1016/j.rse.2020.111791

    Article  Google Scholar 

  36. Mayer, H. (1999). Air pollution in cities. Atmospheric Environment, 33(24), 4029–4037. https://doi.org/10.1016/S1352-2310(99)00144-2

    Article  CAS  Google Scholar 

  37. Holguin, F. (2008). Traffic, outdoor air pollution, and asthma. Immunology and Allergy Clinics of North America, 28(3), 577–588. https://doi.org/10.1016/j.iac.2008.03.008

    Article  Google Scholar 

  38. McConnell, R., Berhane, K., Yao, L., Jerrett, M., Lurmann, F., Gilliland, F., Künzli, N., Gauderman, J., Avol, E., Thomas, D., & Peters, J. (2006). Traffic, susceptibility, and childhood asthma. Environmental Health Perspectives, 114(5), 766–772. https://doi.org/10.1289/ehp.8594

    Article  CAS  Google Scholar 

  39. Lu, J., Li, B., Li, H., & Al-Barakani, A. (2021). Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities, 108, 102974. https://doi.org/10.1016/j.cities.2020.102974

    Article  Google Scholar 

  40. Mölders, N. (2011). Land-use and land-cover changes: Impact on climate and air quality. Springer Science & Business Media.

  41. Bandeira, J. M., Coelho, M. C., Sá, M. E., Tavares, R., & Borrego, C. (2011). Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Science of The Total Environment, 409(6), 1154–1163. https://doi.org/10.1016/j.scitotenv.2010.12.008

    Article  CAS  Google Scholar 

  42. Shen, T. T. (1982). Air quality assessment for land disposal of industrial wastes. Environmental Management, 6(4), 297–305. https://doi.org/10.1007/BF01875061

    Article  CAS  Google Scholar 

  43. Weng, Q., & Yang, S. (2006). Urban air pollution patterns, land use, and thermal landscape: An examination of the linkage using GIS. Environmental Monitoring and Assessment, 117(1–3), 463–489. https://doi.org/10.1007/s10661-006-0888-9

    Article  CAS  Google Scholar 

  44. Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., & Briggs, D. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42(33), 7561–7578. https://doi.org/10.1016/j.atmosenv.2008.05.057

    Article  CAS  Google Scholar 

  45. Yang, H., Chen, W., & Liang, Z. (2017). Impact of land use on PM2.5 pollution in a representative city of Middle China. International Journal of Environmental Research and Public Health, 14(5), 462. https://doi.org/10.3390/ijerph14050462

    Article  CAS  Google Scholar 

  46. Larkin, A., & Hystad, P. (2019). Evaluating street view exposure measures of visible green space for health research. Journal of Exposure Science & Environmental Epidemiology, 29(4), 447–456. https://doi.org/10.1038/s41370-018-0017-1

    Article  Google Scholar 

  47. Helbich, M., Yao, Y., Liu, Y., Zhang, J., Liu, P., & Wang, R. (2019). Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environment International, 126, 107–117. https://doi.org/10.1016/j.envint.2019.02.013

    Article  Google Scholar 

  48. Li, X., Zhang, C., & Li, W. (2017). Building block level urban land-use information retrieval based on Google Street View images. GIScience & Remote Sensing, 54(6), 819–835. https://doi.org/10.1080/15481603.2017.1338389

    Article  Google Scholar 

  49. Qi, M., Lu, T., & Hankey, S. (2020). Using Google Street View imagery in land use regression to predict street level particulate air pollution. ISEE Conference Abstracts. https://doi.org/10.1289/isee.2020.virtual.O-OS-641

    Article  Google Scholar 

  50. Lu, T., Marshall, J. D., Zhang, W., Hystad, P., Kim, S.-Y., Bechle, M. J., Demuzere, M., & Hankey, S. (2021). National empirical models of air pollution using microscale measures of the urban environment. Environmental Science & Technology, 55(22), 15519–15530. https://doi.org/10.1021/acs.est.1c04047

    Article  CAS  Google Scholar 

  51. Daepp, M. I. G., Cabral, A., Ranganathan, V., Iyer, V., Counts, S., Johns, P., Roseway, A., Catlett, C., Jancke, G., Gehring, D., Needham, C., von Veh, C., Tran, T., Story, L., D’Amone, G., & Nguyen, B. H. (2022). Eclipse: An end-to-end platform for low-cost, hyperlocal environmental sensing in cities. 2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 28–40. https://doi.org/10.1109/IPSN54338.2022.00010

  52. Matte, T. D., Ross, Z., Kheirbek, I., Eisl, H., Johnson, S., Gorczynski, J. E., Kass, D., Markowitz, S., Pezeshki, G., & Clougherty, J. E. (2013). Monitoring intraurban spatial patterns of multiple combustion air pollutants in New York City: Design and implementation. Journal of Exposure Science & Environmental Epidemiology, 23(3), 223–231. https://doi.org/10.1038/jes.2012.126

    Article  CAS  Google Scholar 

  53. Project Eclipse. (n.d.). Project Eclipse. Microsoft Research. Retrieved January 30, 2022, from https://www.microsoft.com/en-us/research/project/project-eclipse/

  54. AQI Basics | AirNow.gov. (n.d.). AirNow.gov, U.S. EPA. Retrieved January 30, 2022, from https://www.airnow.gov/aqi/aqi-basics

  55. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  CAS  Google Scholar 

  56. Reback, J., McKinney, W., jbrockmendel, den Bossche, J. V., Augspurger, T., Cloud, P., gfyoung, Sinhrks, Klein, A., Roeschke, M., Hawkins, S., Tratner, J., She, C., Ayd, W., Petersen, T., Garcia, M., Schendel, J., Hayden, A., MomIsBestFriend, … & Mehyar, M. (2020). pandas-dev/pandas: Pandas 1.0.3. Zenodo. https://doi.org/10.5281/zenodo.3715232

  57. Caswell, T. A., Droettboom, M., Lee, A., de Andrade, E. S., Hoffmann, T., Hunter, J., Klymak, J., Firing, E., Stansby, D., Varoquaux, N., Nielsen, J. H., Root, B., May, R., Elson, P., Seppänen, J. K., Dale, D., Lee, J.-J., McDougall, D., Straw, A., … & Ivanov, P. (2021). matplotlib/matplotlib: REL: v3.5.1. Zenodo. https://doi.org/10.5281/zenodo.5773480

  58. Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

  59. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition (arXiv:1409.1556). arXiv. https://doi.org/10.48550/arXiv.1409.1556

  60. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition (arXiv:1512.03385). arXiv. https://doi.org/10.48550/arXiv.1512.03385

  61. Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement (arXiv:1804.02767). arXiv. https://doi.org/10.48550/arXiv.1804.02767

  62. Hendry, & Chen, R. C. (2019). Automatic license plate recognition via sliding-window darknet-YOLO deep learning. Image and Vision Computing, 87, 47–56. https://doi.org/10.1016/j.imavis.2019.04.007

    Article  Google Scholar 

  63. Huang, R., Pedoeem, J., & Chen, C. (2018). YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers. IEEE International Conference on Big Data (Big Data), 2018, 2503–2510. https://doi.org/10.1109/BigData.2018.8621865

    Article  Google Scholar 

  64. Cui, H., Yuan, G., Liu, N., Xu, M., & Song, H. (2020). Convolutional neural network for recognizing highway traffic congestion. Journal of Intelligent Transportation Systems, 24(3), 279–289. https://doi.org/10.1080/15472450.2020.1742121

    Article  Google Scholar 

  65. Kang, J., Körner, M., Wang, Y., Taubenböck, H., & Zhu, X. X. (2018). Building instance classification using street view images. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 44–59. https://doi.org/10.1016/j.isprsjprs.2018.02.006

    Article  Google Scholar 

  66. Liu, T., Abd-Elrahman, A., Morton, J., & Wilhelm, V. L. (2018). Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GIScience & Remote Sensing, 55(2), 243–264. https://doi.org/10.1080/15481603.2018.1426091

    Article  Google Scholar 

  67. Bressem, K. K., Adams, L. C., Erxleben, C., Hamm, B., Niehues, S. M., & Vahldiek, J. L. (2020). Comparing different deep learning architectures for classification of chest radiographs. Scientific Reports, 10(1), 13590. https://doi.org/10.1038/s41598-020-70479-z

    Article  CAS  Google Scholar 

  68. Zhou, B. (2018). Interpretable representation learning for visual intelligence. 140

  69. Arcmap. (n.d.). Image classification using the ArcGIS Spatial Analyst extension—ArcMap | Documentation. Retrieved January 30, 2022, from https://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/image-classification/image-classification-using-spatial-analyst.htm

  70. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.

    Google Scholar 

  71. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785

  72. Wong, P.-Y., Su, H.-J., Lee, H.-Y., Chen, Y.-C., Hsiao, Y.-P., Huang, J.-W., Teo, T.-A., Wu, C.-D., & Spengler, J. D. (2021). Using land-use machine learning models to estimate daily NO2 concentration variations in Taiwan. Journal of Cleaner Production, 317, 128411. https://doi.org/10.1016/j.jclepro.2021.128411

    Article  CAS  Google Scholar 

  73. Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256–285. https://doi.org/10.1006/inco.1995.1136

    Article  Google Scholar 

  74. Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30. Retrieved January 20, 2022, from https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

  75. Molnar, C. (n.d.). 9.5 Shapley Values | Interpretable machine learning. Retrieved January 20, 2022, from https://christophm.github.io/interpretable-ml-book/shapley.html#general-idea

  76. Rozemberczki, B., Watson, L., Bayer, P., Yang, H.-T., Kiss, O., Nilsson, S., & Sarkar, R. (2022). The Shapley value in machine learning. ArXiv:2202.05594 [Cs]. http://arxiv.org/abs/2202.05594

  77. Santarius, T. (2022). Climate justice and digitalization: A plea to consider broader socio-economic implications of digitalization and climate change. GAIA - Ecological Perspectives for Science and Society, 31(3), 146–150. https://doi.org/10.14512/gaia.31.3.4

Download references

Funding

This research was supported by National Science Foundation (NSF-2125858), the UT Good System Grand Challenge (Good Systems-2133302), and the USDOT Cooperative Mobility for Competitive Megaregions University Transportation Center at The University of Texas at Austin (USDOT CM2-1952193).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection analysis were performed by Seung Jun Choi and Huihai Wang. The first draft of the manuscript was written by Seung Jun Choi and Huihai Wang, and all authors commented on the draft versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seung Jun Choi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, J., Choi, S.J., Wang, H. et al. Evaluating Air Quality Status in Chicago: Application of Street View Imagery and Urban Climate Sensors. Environ Model Assess (2023). https://doi.org/10.1007/s10666-023-09894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10666-023-09894-1

Keywords

Navigation