Skip to main content

Advertisement

Log in

Refined Three-Dimensional River Channel Reconstruction Method Based on Coarse DEMs for Flood Simulation

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Flood forecasts commonly require reliable input data to accurately reflect the actual situation. Although widely used in the world, the coarse digital elevation models (DEMs) from remote sensing often provide poor representations of the real topography due to the effects of water and mountain shadows. Remote sensing methods cannot reliably capture riverbed elevations, and fine-scale DEMs are needed. Due to the high cost of labor and material resource limitations, complete fine-scale DEMs are difficult to obtain to support flood forecasting across long reaches at sufficiently high precision. This work presents a refined three-dimensional river channel reconstruction method by considering the longitudinal and lateral topographic features of rivers to provide realistic river terrain data. The performance of this method in flood simulation is confirmed by simulating extreme flood events in the lower-670-km reach of the Jinsha River at a 30-m resolution. The numerical simulations and field measurements are quantitatively compared in terms of flood peaks and flood propagation processes. Numerical experiments further confirm that uncertainties from terrain inputs are not amplified by the hydrodynamic model when producing the final flood forecasting outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data and code that support the study are available from the corresponding author upon reasonable request.

References

  1. Alderman, K., Turner, L. R., & Tong, S. (2012). Floods and human health: A systematic review. Environment International, 47, 37–47. https://doi.org/10.1016/j.envint.2012.06.003

    Article  Google Scholar 

  2. Berthou, S., Kendon, E. J., Chan, S. C., Ban, N., Leutwyler, D., Schär, C., & Fosser, G. (2020). Pan-European climate at convection-permitting scale: A model intercomparison study. Climate Dynamics, 55(1–2), 35–59. https://doi.org/10.1007/s00382-018-4114-6

    Article  Google Scholar 

  3. Wood, M., de Jong, S. M., & Straatsma, M. W. (2018). Locating flood embankments using SAR time series: A proof of concept. International Journal of Applied Earth Observation and Geoinformation, 70, 72–83. https://doi.org/10.1016/j.jag.2018.04.003

    Article  Google Scholar 

  4. de Koning, K., Filatova, T., & Bin, O. (2017). Bridging the gap between revealed and stated preferences in flood-prone housing markets. Ecological Economics, 136, 1–13. https://doi.org/10.1016/j.ecolecon.2017.01.022

    Article  Google Scholar 

  5. Xia, X., Liang, Q., Ming, X., & Hou, J. (2017). An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resources Research, 53(5), 3730–3759. https://doi.org/10.1002/2016WR020055

    Article  Google Scholar 

  6. Lai, W., & Khan, A. A. (2012). Discontinuous galerkin method for 1D shallow water flows in natural rivers. Engineering Applications of Computational Fluid Mechanics, 6(1), 74–86. https://doi.org/10.1080/19942060.2012.11015404

    Article  Google Scholar 

  7. Wang, B., Chen, Y., Wu, C., Peng, Y., Ma, X., & Song, J. (2017). Analytical solution of dam-break flood wave propagation in a dry sloped channel with an irregular-shaped cross-section. Journal of Hydro-Environment Research, 14, 93–104. https://doi.org/10.1016/j.jher.2016.11.003

    Article  Google Scholar 

  8. Wang, B., Liu, X., Zhang, J., Guo, Y., Chen, Y., Peng, Y., … Zhang, F. (2020). Analytical and experimental investigations of dam-break flows in triangular channels with wet-bed conditions. Journal of Hydraulic Engineering, 146(10). https://doi.org/10.1061/(asce)hy.1943-7900.0001808

  9. Wang, B., Zhang, J., Chen, Y., Peng, Y., Liu, X., & Liu, W. (2019). Comparison of measured dam-break flood waves in triangular and rectangular channels. Journal of Hydrology, 575, 690–703. https://doi.org/10.1016/j.jhydrol.2019.05.081

    Article  Google Scholar 

  10. Yang, S., Wang, B., Guo, Y., Zhang, J., & Chen, Y. (2020). Gate-opening criterion for generating dam-break flow in non-rectangular wet bed channels. Energies, 13(23). https://doi.org/10.3390/en13236280

  11. Capart, H. (2013). Analytical solutions for gradual dam breaching and downstream river flooding. Water Resources Research, 49(4), 1968–1987. https://doi.org/10.1002/wrcr.20167

    Article  Google Scholar 

  12. O’Dea, E., Bell, M. J., Coward, A., & Holt, J. (2020). Implementation and assessment of a flux limiter based wetting and drying scheme in NEMO. Ocean Modelling, 155. https://doi.org/10.1016/j.ocemod.2020.101708

  13. Schive, H. Y., ZuHone, J. A., Goldbaum, N. J., Turk, M. J., Gaspari, M., & Cheng, C. Y. (2018). GAMER-2: A GPU-accelerated adaptive mesh refinement code - Accuracy, performance, and scalability. Monthly Notices of the Royal Astronomical Society, 481(4), 4815–4840. https://doi.org/10.1093/MNRAS/STY2586

    Article  CAS  Google Scholar 

  14. Dazzi, S., Vacondio, R., & Mignosa, P. (2019). Integration of a levee breach erosion model in a GPU-accelerated 2D shallow water equations code. Water Resources Research, 55(1), 682–702. https://doi.org/10.1029/2018WR023826

    Article  Google Scholar 

  15. Xia, X., Liang, Q., & Ming, X. (2019). A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Advances in Water Resources, 132. https://doi.org/10.1016/j.advwatres.2019.103392

  16. Ming, X., Liang, Q., Xia, X., Li, D., & Fowler, H. J. (2020). Real-time flood forecasting based on a high-performance 2-D hydrodynamic model and numerical weather predictions. Water Resources Research, 56(7). https://doi.org/10.1029/2019WR025583

  17. Mandlburger, G., Hauer, C., Höfle, B., Habersack, H., & Pfeifer, N. (2009). Optimisation of LiDAR derived terrain models for river flow modelling. Hydrology and Earth System Sciences, 13(8), 1453–1466. https://doi.org/10.5194/hess-13-1453-2009

    Article  Google Scholar 

  18. Huai, B., Li, Z., Wang, S., Sun, M., Zhou, P., & Xiao, Y. (2014). RS analysis of glaciers change in the Heihe River Basin, Northwest China, during the recent decades. Journal of Geographical Sciences, 24(6), 993–1008. https://doi.org/10.1007/s11442-014-1133-z

    Article  Google Scholar 

  19. Kang, S. H. (2009). The application of integrated urban inundation model in Republic of Korea. Hydrological Processes, 23(11), 1642–1649. https://doi.org/10.1002/hyp.7297

    Article  Google Scholar 

  20. Jena, P. P., Panigrahi, B., & Chatterjee, C. (2016). Assessment of Cartosat-1 DEM for modeling floods in data scarce regions. Water Resources Management, 30(3), 1293–1309. https://doi.org/10.1007/s11269-016-1226-9

    Article  Google Scholar 

  21. Paiva, R. C. D., Collischonn, W., & Tucci, C. E. M. (2011). Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology, 406(3–4), 170–181. https://doi.org/10.1016/j.jhydrol.2011.06.007

    Article  Google Scholar 

  22. Pilotti, M. (2016). Extraction of cross sections from digital elevation model for one-dimensional dam-break wave propagation in mountain valleys. Water Resources Research, 52(1), 52–68. https://doi.org/10.1002/2015WR017017

    Article  Google Scholar 

  23. Lin, L., Di, L., Tang, J., Yu, E., Zhang, C., Rahman, M. S., … Kang, L. (2019). Improvement and validation of NASA/MODIS NRT global flood mapping. Remote Sensing, 11(2), 18. https://doi.org/10.3390/rs11020205

  24. Vaze, J., Teng, J., & Spencer, G. (2010). Impact of DEM accuracy and resolution on topographic indices. Environmental Modelling and Software, 25(10), 1086–1098. https://doi.org/10.1016/j.envsoft.2010.03.014

    Article  Google Scholar 

  25. Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., … Alsdorf, D. E. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2). https://doi.org/10.1029/2005RG000183

  26. Aberle, J., Nikora, V., Henning, M., Ettmer, B., & Hentschel, B. (2010). Statistical characterization of bed roughness due to bed forms: A field study in the Elbe River at Aken. Germany. Water Resources Research, 46(3), 11. https://doi.org/10.1029/2008WR007406

    Article  Google Scholar 

  27. Yue, L., Shen, H., Zhang, L., Zheng, X., Zhang, F., & Yuan, Q. (2017). High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 20–34. https://doi.org/10.1016/j.isprsjprs.2016.11.002

    Article  Google Scholar 

  28. Gichamo, T. Z., Popescu, I., Jonoski, A., & Solomatine, D. (2012). River cross-section extraction from the ASTER global DEM for flood modeling. Environmental Modelling and Software, 31, 37–46. https://doi.org/10.1016/j.envsoft.2011.12.003

    Article  Google Scholar 

  29. Hou, J., Ma, Y., Wang, T., Li, B., Li, X., Wang, F., … Ma, H. (2021). A river channel terrain reconstruction method for flood simulations based on coarse DEMs. Environmental Modelling and Software, 140, 105035. https://doi.org/10.1016/j.envsoft.2021.105035

  30. Mejia, A. I., & Reed, S. M. (2011). Role of channel and floodplain cross-section geometry in the basin response. Water Resources Research, 47(9), 15. https://doi.org/10.1029/2010WR010375

    Article  Google Scholar 

  31. Podhoranyi, M., & Fedorcak, D. (2015). Inaccuracy introduced by LiDAR-generated cross sections and its impact on 1D hydrodynamic simulations. Environmental Earth Sciences, 73(1), 1–11. https://doi.org/10.1007/s12665-014-3390-7

    Article  Google Scholar 

  32. Ancey, C., Iverson, R. M., Rentschler, M., & Denlinger, R. P. (2008). An exact solution for ideal dam-break floods on steep slopes. Water Resources Research, 44(1), 10. https://doi.org/10.1029/2007WR006353

    Article  Google Scholar 

  33. Chanson, H. (2009). Application of the method of characteristics to the dam break wave problem. Journal of Hydraulic Research, 47(1), 41–49. https://doi.org/10.3826/jhr.2009.2865

    Article  Google Scholar 

  34. Fang, Q., Tang, C., Chen, Z., Wang, S., & Yang, T. (2019). A calculation method for predicting the runout volume of dam-break and non-dam-break debris flows in the Wenchuan earthquake area. Geomorphology, 327, 201–214. https://doi.org/10.1016/j.geomorph.2018.10.023

    Article  Google Scholar 

  35. Wang, B., Chen, Y., Peng, Y., Zhang, J., & Guo, Y. (2020). Analytical solution of shallow water equations for ideal dam-break flood along a wet-bed slope. Journal of Hydraulic Engineering, 146(2), 6. https://doi.org/10.1061/(asce)hy.1943-7900.0001683

    Article  Google Scholar 

  36. Roux, H., & Dartus, D. (2008). Sensitivity analysis and predictive uncertainty using inundation observations for parameter estimation in open-channel inverse problem. Journal of Hydraulic Engineering, 134(5), 541–549. https://doi.org/10.1061/(asce)0733-9429(2008)134:5(541)

    Article  Google Scholar 

  37. Safari, M. J. S. (2020). Hybridization of multivariate adaptive regression splines and random forest models with an empirical equation for sediment deposition prediction in open channel flow. Journal of Hydrology, 590, 17. https://doi.org/10.1016/j.jhydrol.2020.125392

    Article  Google Scholar 

  38. Ferguson, R. I. (1986). Hydraulics and hydraulic geometry. Progress in Physical Geography, 10(1), 1–31. https://doi.org/10.1177/030913338601000101

    Article  Google Scholar 

  39. Lawrence, D. S. (2007). Analytical derivation of at-a-station hydraulic-geometry relations. Journal of Hydrology, 334(1–2), 17–27. https://doi.org/10.1016/j.jhydrol.2006.09.021

    Article  Google Scholar 

  40. Allen, G. H., Pavelsky, T. M., Barefoot, E. A., Lamb, M. P., Butman, D., Tashie, A., & Gleason, C. J. (2018). Similarity of stream width distributions across headwater systems. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-02991-w

  41. Godsey, S. E., & Kirchner, J. W. (2014). Dynamic, discontinuous stream networks: Hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrological Processes, 28(23), 5791–5803. https://doi.org/10.1002/hyp.10310

    Article  Google Scholar 

  42. Neal, J. C., Odoni, N. A., Trigg, M. A., Freer, J. E., Garcia-Pintado, J., Mason, D. C., … Bates, P. D. (2015). Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models. Journal of Hydrology, 529, 169–183. https://doi.org/10.1016/j.jhydrol.2015.07.026

  43. Farina, G., Alvisi, S., Franchini, M., Corato, G., & Moramarco, T. (2015). Estimation of bathymetry (and discharge) in natural river cross-sections by using an entropy approach. Journal of Hydrology, 527, 20–29. https://doi.org/10.1016/j.jhydrol.2015.04.037

    Article  Google Scholar 

  44. Hou, J., Wang, T., Li, P., Li, Z., Zhang, X., Zhao, J., & Hinkelmann, R. (2018). An implicit friction source term treatment for overland flow simulation using shallow water flow model. Journal of Hydrology, 564, 357–366. https://doi.org/10.1016/j.jhydrol.2018.07.027

    Article  Google Scholar 

  45. Zhang, L., Xiao, T., He, J., & Chen, C. (2019). Erosion-based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018. Landslides, 16(10), 1965–1979. https://doi.org/10.1007/s10346-019-01247-y

    Article  Google Scholar 

  46. Fan, X., Yang, F., Siva Subramanian, S., Xu, Q., Feng, Z., Mavrouli, O., … Huang, R. (2020). Prediction of a multi-hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China. Landslides, 17(1), 147–164. https://doi.org/10.1007/s10346-019-01313-5

  47. Dasgupta, A., Hostache, R., Ramsankaran, R. A. A. J., Schumann, G. J. P., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2021). On the impacts of observation location, timing, and frequency on flood extent assimilation performance. Water Resources Research, 57(2). https://doi.org/10.1029/2020WR028238

  48. Thomas, R. Q., Figueiredo, R. J., Daneshmand, V., Bookout, B. J., Puckett, L. K., & Carey, C. C. (2020). A near-term iterative forecasting system successfully predicts reservoir hydrodynamics and partitions uncertainty in real time. Water Resources Research, 56(11). https://doi.org/10.1029/2019WR026138

  49. McClean, F., Dawson, R., & Kilsby, C. (2020). Implications of using global digital elevation models for flood risk analysis in cities. Water Resources Research, 56(10). https://doi.org/10.1029/2020WR028241

  50. Prakash Mohanty, M., Nithya, S., Nair, A. S., Indu, J., Ghosh, S., Mohan Bhatt, C., … Karmakar, S. (2020). Sensitivity of various topographic data in flood management: Implications on inundation mapping over large data-scarce regions. Journal of Hydrology, 590. https://doi.org/10.1016/j.jhydrol.2020.125523

  51. Glenn, J., Tonina, D., Morehead, M. D., Fiedler, F., & Benjankar, R. (2016). Effect of transect location, transect spacing and interpolation methods on river bathymetry accuracy. Earth Surface Processes and Landforms, 41(9), 1185–1198. https://doi.org/10.1002/esp.3891

    Article  Google Scholar 

  52. Xia, J., Zhang, X., Wang, Z., Li, J., & Zhou, M. (2018). Modelling of hyperconcentrated flood and channel evolution in a braided reach using a dynamically coupled one-dimensional approach. Journal of Hydrology, 561, 622–635. https://doi.org/10.1016/j.jhydrol.2018.04.017

    Article  Google Scholar 

  53. Benjankar, R., Tonina, D., & Mckean, J. (2015). One-dimensional and two-dimensional hydrodynamic modeling derived flow properties: Impacts on aquatic habitat quality predictions. Earth Surface Processes and Landforms, 40(3), 340–356. https://doi.org/10.1002/esp.3637

    Article  Google Scholar 

  54. Liu, Z., & Merwade, V. (2019). Separation and prioritization of uncertainty sources in a raster based flood inundation model using hierarchical Bayesian model averaging. Journal of Hydrology, 578. https://doi.org/10.1016/j.jhydrol.2019.124100

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 52079106, 52009104); Chinesisch-Deutsches Mobilitatsprogramm (M-0427); the Shaanxi Province Innovation Talent Promotion Plan Project Technology Innovation Team (No. 2020TD-023); the Key R&D Program of Shaanxi Province (No. 2021SF-484).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology: Yongyong Ma, Jingming Hou, and Wei Liu. Writing—original draft preparation: Yongyong Ma. Material preparation, collection, and analysis: Yongyong Ma, Wei Liu, Bingyao Li, Tian Wang, and Feng Wang. Funding acquisition: Jingming Hou and Tian Wang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingming Hou.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Hou, J., Liu, W. et al. Refined Three-Dimensional River Channel Reconstruction Method Based on Coarse DEMs for Flood Simulation. Environ Model Assess 28, 787–802 (2023). https://doi.org/10.1007/s10666-023-09887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-023-09887-0

Keywords

Navigation