Skip to main content

Advertisement

Log in

Determining Urban Expansion Areas Using Parcel-Based Estimation Model: Saray Case Study

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Population growth causes spatial expansion in urban areas and harms the ecological assets on the periphery of cities. Identifying the growth trends in an urban area is critical to formulate predictive planning techniques, define manageable urban processes, guide the investments in the city, and increase the quality of life while ensuring a balance between the natural and the built environments. It is a planning tool required to determine the dynamics that affect the direction of expansion in an urban area and to identify potential growth areas with a holistic approach, detect any future problems, and find solutions to these problems. The scope of this study is to build a model that predicts the potential urban expansion areas. The model was developed based on several main criteria: (1) proximity, (2) natural environment, (3) built-up environment, and (4) plan decisions. The analytical hierarchy process (AHP) was used to identify the weight of each criterion and related sub-criteria. The results of the study were used to detect the most probable urban development areas that will serve the projected population for 2040 for the city of Saray. This study aims to predict the growth direction of the Saray urban area and identify the areas that are hard-pressed by development depending on the current dynamics in the city. Thus, a practical urban growth estimation model is proposed for future studies in planning. The results of the model show that the city of Saray tends to sustain its mono-centric and compact urban form in 2040.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. United Nations. (2019). World population prospects 2019: Highlights. ST/ESA/SER.A/423. Retrieved December 24, 2020, from https://population.un.org/wpp/Publications/

  2. Turkish Statistical Institute. (2019). Türkiye İstatistik Kurumu. Retrieved January 18, 2021, from https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1

  3. United Cities and Local Governments. (2020). Intermediary cities. Retrieved December 24, 2020, from https://www.uclg.org/en/agenda/intermediary-cities

  4. UCLG. (2020). Intermediate cities (pp. 592–592). Retrieved December 24, 2020, from https://www.uclg.org/en/agenda/intermediary-cities

  5. OECD. (2020). Urban population by city size. Retrieved December 24, 2020, from https://data.oecd.org/popregion/urban-population-by-city-size.htm

  6. Vienna University of Technology. (2020). European smart cities. Retrieved December 24, 2020, from http://www.smart-cities.eu/?cid=-1&ver=3

  7. Belediye Kanunu (Municipal Law). (2005). Belediye Kanunu (Municipal Law). Retrieved December 24, 2020, from https://www.mevzuat.gov.tr/MevzuatMetin/1.5.5393.pdf

  8. Giffinger, R., Fertner, C., Kramar, H., Meijers, E., Rudolf Giffinger, M., Christian Fertner, D-I., et al. City-ranking of European medium-sized cities.

  9. TÜİK (Türkiye İstatistik Kurumu). (2018). Yıllara ve cinsiyete göre il/ilçe merkezleri ve belde/köyler nüfusu, 1927–2018 (City/district centers and population of towns/villages by years and gender).

  10. Irwin, EG., Jayaprakash, C., & Munroe, D. K. (2009). Towards a comprehensive framework for modeling urban spatial dynamics. Landscape Ecology, 24 (9), 1223–1236.

  11. Cohen, B. (2004). Urban growth in developing countries: A review of current trends and a caution regarding existing forecasts. World Development, 32(1), 23–51.

  12. Gómez-Antonio, M., Hortas-Rico, M., & Li, L. (2016). The causes of urban sprawl in Spanish urban areas: A spatial approach. Spatial Economic Analysis, 11(2), 219–247. https://doi.org/10.1080/17421772.2016.1126674

  13. Bhatta, B. (2010). Causes and consequences of urban. Advances in Geographic Information Science, 47, 17–37.

  14. Burchfield, M., Overman, H. G., Puga, D., & Turner, M. A. (2006). Causes of sprawl: A portrait from space. The Quarterly Journal of Economics, 121(2), 587-633.

  15. Lichtenberg, E., & Ding, C. (2009). Local officials as land developers: Urban spatial expansion in China. Journal of Urban Economics, 66(1), 57–64.

  16. Daunt, ABP., Inostroza, L., & Hersperger, A. M. (2021). The role of spatial planning in land change: An assessment of urban planning and nature conservation efficiency at the southeastern coast of Brazil. Land Use Policy, 111, 105771.

  17. Harvey, R., & Clark WA, V. (1965). The nature and economics of urban sprawl. Land Economics, 41(1), 1–9.

  18. Garcia-López M. A. (2012).Urban spatial structure, suburbanization and transportation in Barcelona. Journal of  Urban Economics, 72(2–3), 176–190.

  19. Batty, M., & Xie, Y. (1994). From cells to cities. Environment and Planning B: Planning and  Design, 21, 531–548.

  20. White, R., & Engelen, G. (2000). High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems, 24(5), 383–400.

  21. Wegener, M. (2004). Overview of land use transport models. 127–146.

  22. Agarwal, C., Green, G. M., Grove, J. M., Evans, T. P., & Schweik, C. M. (2002). A review and assessment of land-use change models: Dynamics of space, time, and human choice. Apollo: The International Magazine of Art and Antiques, 62.

  23. Musa, S. I., Hashim, M., & Reba, M. N. M. (2017) A review of geospatial-based urban growth models and modelling initiatives. Geocarto International, 32(8), 813–833. https://doi.org/10.1080/10106049.2016.1213891

  24. Li, X., & Gong, P. (2016) Urban growth models: Progress and perspective. Science Bulletin, 61(21), 1637–1650.

  25. Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122.

  26. Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61(4), 309–324.

  27. Triantakonstantis, D., & Mountrakis, G. (2012). Urban growth prediction: a review of computational models and human perceptions, 04(06), 555–587

  28. Berling-Wolff, S., & Wu, J. (2004). Modeling urban landscape dynamics: A review. Ecological Research, 19(1), 119–129.

  29. Pontius, R. G., Boersma, W., Castella, J. C., Clarke, K., de Nijs, T., Dietzel, C., ... & Verburg, P. H. (2008). Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42(1), 11–37.

  30. Batty, M. (1991). Cities as fractals: simulating growth and form. In Fractals and chaos (pp. 43–69). New York, NY: Springer. https://doi.org/10.1007/978-1-4612-3034-2_4

  31. White, R., & Engelen, G. (1993). Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A, 25(8), 1175–1199.

  32. Wu, F. (1998). Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system. Journal of Environmental Management, 53(4), 293–308.

  33. Waddell, P. (2011). UrbanSim: Modeling urban development for land use, transportation and environmental planning. UrbanSim: Modeling Urban Development for Land Use, Transportation and Environmental Planning Abstract.

  34. Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the association of American Geographers, 93(2), 314–337.

  35. Malczewski, J. (2004). GIS-based land-use suitability analysis: a critical overview. Progress in planning, 62(1), 3–65.

  36. Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Economic research-Ekonomska istraživanja, 28(1), 516–571.

  37. Simwanda, M., Murayama, Y., & Ranagalage, M. (2020). Modeling the drivers of urban land use changes in Lusaka, Zambia using multi-criteria evaluation: An analytic network process approach. Land Use Policy, 92, 104441.

  38. Cay, T., & Uyan, M. (2013). Evaluation of reallocation criteria in land consolidation studies using the Analytic Hierarchy Process (AHP). Land Use Policy, 30(1), 541–548.

  39. Rikalovic, A., Cosic, I., & Lazarevic, D. (2014). GIS based multi-criteria analysis for industrial site selection. Procedia Engineering, 69, 1054–1063.

  40. Chang, N. B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1), 139–153.

  41. Şener, B., Süzen, M. L., & Doyuran, V. (2006). Landfill site selection by using geographic information systems. Environmental Geology, 49(3), 376–388.

  42. Wang, G., Qin, L., Li, G., & Chen, L. (2009). Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. Journal of Environmental Management, 90(8), 2414–2421.

  43. Karimi, H., Amiri, S., Huang, J., & Karimi, A. (2019). Integrating GIS and multi-criteria decision analysis for landfill site selection, case study: Javanrood County in Iran. International Journal of Environmental Science and Technology, 16(11), 7305–7318. https://doi.org/10.1007/s13762-018-2151-7

  44. Kaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517–2527.

  45. Akash, B. A., Mamlook, R., & Mohsen, M. S. (1999). Multi-criteria selection of electric power plants using analytical hierarchy process. Electric Power Systems Research, 52(1), 29–35.

  46. Van Haaren, R., & Fthenakis, V. (2011). GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renewable and Sustainable Energy Reviews, 15(7), 3332–3340.

  47. Aydin, N. Y., Kentel, E., & Duzgun, S. (2010). GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. Renewable and Sustainable Energy Reviews, 14(1), 364–373.

  48. Uyan, M. (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable and Sustainable Energy Reviews, 28, 11–17.

  49. Vahidnia, M. H., Alesheikh, A. A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of Environmental Management, 90(10), 3048–3056.

  50. Wu, C. R., Lin, C. T., & Chen, H. C. (2007). Optimal selection of location for Taiwanese hospitals to ensure a competitive advantage by using the analytic hierarchy process and sensitivity analysis. Building and Environment, 42(3), 1431–1444.

  51. Önüt, S., Efendigil, T., & Kara, S. S. (2010). A combined fuzzy MCDM approach for selecting shopping center site: An example from Istanbul, Turkey. Expert Systems with Applications, 37(3), 1973–1980.

  52. Takamura, Y., & Tone, K. (2003). A comparative site evaluation study for relocating Japanese government agencies out of Tokyo. Socio-Economic Planning Sciences, 37(2), 85–102.

  53. Demir, S., Basaraner, M., & Gumus, A. T. (2021). Selection of suitable parking lot sites in megacities: A case study for four districts of Istanbul. Land Use Policy, 105731.

  54. Balta, M. Ö., & Yenil, H. Ü. (2019). Multi criteria decision making methods for urban greenway: The case of Aksaray, Turkey. Land Use Policy, 89, 104224.

  55. Peng, Y. (2015). Regional earthquake vulnerability assessment using a combination of MCDM methods. Annals of Operations Research, 234(1), 95–110. https://doi.org/10.1007/s10479-012-1253-8

  56. Vahdat, K., Smith, N. J., & Amiri, G. G. (2014). Fuzzy multicriteria for developing a risk management system in seismically prone areas. Socio-Economic Planning Sciences, 48(4), 235–248.

  57. Sadrykia, M., Delavar, M. R., & Zare, M. (2017). A GIS-based decision making model using fuzzy sets and theory of evidence for seismic vulnerability assessment under uncertainty (case study: Tabriz). Journal of Intelligent & Fuzzy Systems, 33(3), 1969–1981.

  58. Hadi, L. A., Naim, W. M., Adnan, N. A., Nisa, A., & Said, E. S. (2017). GIS based multi-criteria decision making for flood vulnerability index assessment. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(1–2), 7–11.

  59. Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., & Nasseri, M. (2019). A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. Journal of Hydrology, 572, 17–31.

  60. Hossain, M. K., & Meng, Q. (2020). A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood. Land Use Policy, 99, 104829.

  61. Koroso, N. H., Zevenbergen, J. A., & Lengoiboni, M. (2020). Urban land use efficiency in Ethiopia: An assessment of urban land use sustainability in Addis Ababa. Land Use Policy, 99, 105081.

  62. Nesticò, A., Elia, C., & Naddeo, V. (2020). Sustainability of urban regeneration projects: Novel selection model based on analytic network process and zero-one goal programming. Land Use Policy, 99, 104831.

  63. Osman, T., Divigalpitiya, P., & Arima, T. (2016). Driving factors of urban sprawl in Giza Governorate of Greater Cairo Metropolitan Region using AHP method. Land Use Policy, 58, 21–31.

  64. Caprioli, C., & Bottero, M. (2021). Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures. Land Use Policy, 102, 105147.

  65. Ustaoglu, E., & Aydınoglu, A. C. (2020). Suitability evaluation of urban construction land in Pendik district of Istanbul, Turkey. Land Use Policy, 99, 104783.

  66. Önüt, S., & Soner, S. (2008). Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Waste Management, 28(9), 1552–1559.

  67. Lee, G. K., & Chan, E. H. (2008). The analytic hierarchy process (AHP) approach for assessment of urban renewal proposals. Social Indicators Research, 89(1), 155–168. https://doi.org/10.1007/s11205-007-9228-x.

  68. Cheng, J., & Masser, I. (2003). Urban growth pattern modeling: a case study of Wuhan city, PR China. Landscape and Urban Planning, 62(4), 199–217.

  69. Hu, Z., & Lo, C. P. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667–688.

  70. Shi, G., Shan, J., Ding, L., Ye, P., Li, Y., & Jiang, N. (2019). Urban road network expansion and its driving variables: a case study of Nanjing City. International Journal of Environmental Research and Public Health, 16(13).

  71. Shafizadeh-Moghadam, H., Asghari, A., Tayyebi, A., & Taleai, M. (2017). Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Computers, Environment and Urban Systems, 64, 297–308.

  72. Feng, Y., Liu, Y., & Batty, M. (2016). Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–Songjiang area of Shanghai, China. Stochastic Environmental Research and Risk Assessment, 30(5), 1387–1400.

  73. Feng, Y., Liu, M., Chen, L., & Liu, Y. (2016). Simulation of dynamic urban growth with partial least squares regression-based cellular automata in a GIS environment. ISPRS International Journal of Geo-Information, 5(12), 243.

  74. Huang, B., Xie, C., & Tay, R. (2010). Support vector machines for urban growth modeling. Geoinformatica, 14(1), 83–99. https://doi.org/10.1007/s10707-009-0077-4

  75. Chen, Y., Liu, X., & Li, X. (2017). Calibrating a Land Parcel Cellular Automaton (LP-CA) for urban growth simulation based on ensemble learning. International Journal of Geographical Information Science, 31(12), 2480–2504. https://doi.org/10.1080/13658816.2017.1367004

  76. Koziatek, O., & Dragićević, S. (2017). iCity 3D: A geosimualtion method and tool for three-dimensional modeling of vertical urban development. Landscape and Urban Planning, 167, 356–367.

  77. Barredo, J. I., Kasanko, M., McCormick, N., & Lavalle, C. (2003). Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64(3), 145–160.

  78. Akbulut, A., Ozcevik, O., & Carton, L. (2018). Evaluating suitability of a GIS–AHP combined method for sustainable urban and environmental planning in Beykoz district, Istanbul. International Journal of Sustainable Development and Planning, 13(8), 1103–1115.

  79. Malmir, M., Zarkesh, M. M. K., Monavari, S. M., Jozi, S. A., & Sharifi, E. (2016). Analysis of land suitability for urban development in Ahwaz County in southwestern Iran using fuzzy logic and analytic network process (ANP). Environmental Monitoring and Assessment, 188(8), 1–23. https://doi.org/10.1007/s10661-016-5401-5

  80. Zheng, Q., Yang, X., Wang, K., Huang, L., Shahtahmassebi, A. R., Gan, M., & Weston, M. V. (2017). Delimiting urban growth boundary through combining land suitability evaluation and cellular automata. Sustainability, 9(12).

  81. Dong, J., Zhuang, D., Xu, X., & Ying, L. (2008). Integrated evaluation of urban development suitability based on remote sensing and GIS techniques–a case study in Jingjinji Area, China. Sensors, 8(9), 5975–5986.

  82. Aburas, M. M., Abdullah, S. H., Ramli, M. F., & Asha’ari, Z. H. (2017). Land suitability analysis of urban growth in Seremban Malaysia, using GIS based analytical hierarchy process. Procedia Engineering, 198, 1128–1136.

  83. Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99(2), 104–114.

  84. Santosh, C., Krishnaiah, C., & Deshbhandari, P. G. (2018, June). Site suitability analysis for urban development using GIS based multicriteria evaluation technique: a case study in Chikodi Taluk, Belagavi District, Karnataka, India. In IOP Conference Series: Earth and Environmental Science (p. 012017). IOP Publishing. https://doi.org/10.1088/1755-1315/169/1/012017

  85. Anugya, Kumar, V., & Jain, K. (2017). Site suitability evaluation for urban development using remote sensing, GIS and analytic hierarchy process (AHP). In Proceedings of International Conference on Computer Vision and Image Processing (pp. 377–388). Singapore: Springer. https://doi.org/10.1007/978-981-10-2107-7_34

  86. Jain, K., & Subbaiah, Y. V. (2007). Site suitability analysis for urban development using GIS. Journal of Applied Sciences, 7(18), 2576–2583.

  87. Marull, J., Pino, J., Mallarach, J. M., & Cordobilla, M. J. (2007). A land suitability index for strategic environmental assessment in metropolitan areas. Landscape and Urban Planning, 81(3), 200–212.

  88. Aarthi, A. D., & Gnanappazham, L. (2018). Urban growth prediction using neural network coupled agents-based Cellular Automata model for Sriperumbudur Taluk, Tamil Nadu, India. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 353–362. https://doi.org/10.1016/j.ejrs.2017.12.004

  89. Liu, R., Zhang, K., Zhang, Z., & Borthwick, A. G. (2014). Land-use suitability analysis for urban development in Beijing. Journal of Environmental Management, 145, 170-9.

  90. Çevre ve Şehircilik Bakanlığı (Ministry of Environment and Urbanism). (2009). Trakya Alt Bölgesi Ergene Havzası 1/100.000 Ölçekli Revizyon Çevre Düzeni Planı (Thrace Sub-region Ergene Basin 1/100.000 scale revision environmental plan). Retrieved December 20, 2020, from https://mpgm.csb.gov.tr/trakya-alt-bolgesi-ergene-havzasi-i-82194

  91. Puertas, O. L., Henríquez, C., & Meza, F. J. (2014). Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy, 38, 415–425.

  92. Lei, Y., Flacke, J., & Schwarz, N. (2021). Does Urban planning affect urban growth pattern? A case study of Shenzhen, China. Land Use Policy, 101, 105100.

  93. Daunt, A. B. P., Inostroza, L., & Hersperger, A. M. (2021). The role of spatial planning in land change: An assessment of urban planning and nature conservation efficiency at the southeastern coast of Brazil. Land Use Policy, 111, 105771.

  94. Zhang, Y., Chang, X., Liu, Y., Lu, Y., Wang, Y., & Liu, Y. (2021). Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications. Land Use Policy, 108, 105667.

  95. Kukkonen, M. O., Muhammad, M. J., Käyhkö, N., & Luoto, M. (2018). Urban expansion in Zanzibar City, Tanzania: Analyzing quantity, spatial patterns and effects of alternative planning approaches. Land Use Policy, 71, 554-565.

  96. ESRI. (2019). ArcGIS desktop version 10.7, Redland, CA. Environmental Systems.

  97. Stevens, D., Dragicevic, S., & Rothley, K. (2007). iCity: A GIS–CA modelling tool for urban planning and decision making. Environmental Modelling & Software, 22(6), 761-773.

  98. Crooks, A., Castle, C., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417-30.

  99. Dahal, K. R., & Chow, T. E. (2015). Characterization of neighborhood sensitivity of an irregular cellular automata model of urban growth. International Journal of Geographical Information Science, 29(3), 475–497. https://doi.org/10.1080/13658816.2014.987779.

  100. Moreno, N., Ménard, A., & Marceau, D. J. (2008). VecGCA: a vector-based geographic cellular automata model allowing geometric transformations of objects. Environment and Planning B: Planning and Design, 35(4), 647-65.

  101. JBallestores Jr, F., & Qiu, Z. (2012). An integrated parcel-based land use change model using cellular automata and decision tree. Ecology, 2(2), 53–69

  102. González, P. B., Gómez-Delgado, M., & Benavente, F. A. (2015). Vector-based cellular automata: exploring new methods of urban growth simulation with cadastral parcels and graph theory. Proceedings of the CUPUM.

  103. Barreira-González, P., Gómez-Delgado, M., & Aguilera-Benavente, F. (2015). From raster to vector cellular automata models: A new approach to simulate urban growth with the help of graph theory. Computers, Environment and Urban Systems, 54, 119–131. https://doi.org/10.1016/j.compenvurbsys.2015.07.004

  104. Imar Kanunu (Zoning Law). (1985). Imar Kanunu (Zoning Law). Retrieved December 20, 2020, from https://www.mevzuat.gov.tr/MevzuatMetin/1.5.3194.pdf

  105. Myers, J. H., & Alpert, M. I. (1968). Determinant buying attitudes: meaning and measurement. Journal of Marketing, 32(4), 13–20.

  106. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281.

  107. Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy process. Management Science, 26(7), 641–658.

  108. Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29.

  109. Korpela, J., Lehmusvaara, A., & Tuominen, M. (2001). An analytic approach to supply chain development. International Journal of Production Economics, 71(1–3), 145–155.

  110. Crary, M., Nozick, L. K., & Whitaker, L. R. (2002). Sizing the US destroyer fleet. European Journal of Operational Research, 136(3), 680–695.

  111. Su, J. C. Y., Chen, S. J. G., & Lin, L. (2003). A structured approach to measuring functional dependency and sequencing of coupled tasks in engineering design. Computers & Industrial Engineering, 45(1), 195–214.

  112. Lai, V. S., Wong, B. K., & Cheung, W. (2002). Group decision making in a multiple criteria environment: A case using the AHP in software selection. European Journal of Operational Research, 137(1), 134–144.

  113. Kengpol, A., & O'brien, C. (2001). The development of a decision support tool for the selection of advanced technology to achieve rapid product development. International Journal of Production Economics, 69(2), 177–191.

  114. Al-Harbi, K. M. A. S. (2001). Application of the AHP in project management. International Journal of Project Management, 19(1), 19–27.

  115. Erden, T., & Coşkun, M. Z. (2011). Acil durum servislerinin yer seçimi: Analitik Hiyerarşi Yöntemi ve CBS entegrasyonu. İTÜDERGİSİ/d, 9(6).

  116. Ertuğrul, İ., & Karakaşoğlu, N. (2008). Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. The International Journal of Advanced Manufacturing Technology, 39(7), 783–795. https://doi.org/10.1007/s00170-007-1249-8

  117. Saaty, T. L., Vargas, L. G., & Dellmann, K. (2003). The allocation of intangible resources: the analytic hierarchy process and linear programming. Socio-Economic Planning Sciences, 37(3), 169–184.

  118. Yang, J., & Lee, H. (1997). An AHP decision model for facility location selection. Facilities, 15(9–10), 241–254.

  119. Hafeez, K., Zhang, Y., & Malak, N. (2002). Determining key capabilities of a firm using analytic hierarchy process. International Journal of Production Economics, 76(1), 39–51.

  120. Dweiri, F. (1999). Fuzzy development of crisp activity relationship charts for facilities layout. Computers & Industrial Engineering, 36(1), 1–16.

  121. Kim, J. (1998). Hierarchical Structure of Intranet Functions and Their Relative Importance: Using the Analytic Hierarchy Process for Virtual Organizations. Decision Support Systems, 23(1), 59–74.

  122. Blair, A. R., Nachtmann, R., Saaty, T. L., & Whitaker, R. (2006). Forecasting the resurgence of the u.S. economy in 2001: An expert judgment approach. In International Series in Operations Research and Management Science (p. 27–43). New York LLC: Springer.

  123. Superdecision. (2017). Retrieved October 12, 2020, from http://www.superdecisions.com/

  124. Mera Kanunu (Pasture Law). (1998). Mera Kanunu (Pasture Law), p. 10. Retrieved December 20, 2020, from https://www.mevzuat.gov.tr/MevzuatMetin/1.5.4342.pdf

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AK. Supervisions, review, and editing were done by MAY. The first draft of the manuscript was written by AK and MAY commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Azem Kuru.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuru, A., Yüzer, M.A. Determining Urban Expansion Areas Using Parcel-Based Estimation Model: Saray Case Study. Environ Model Assess 28, 547–564 (2023). https://doi.org/10.1007/s10666-023-09878-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-023-09878-1

Keywords

Navigation