Skip to main content
Log in

Development of a Simplistic Mathematical Model for Simultaneous Nitrification and Denitrification in Moving Bed Bioreactor

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The phenomenon of simultaneous nitrification and denitrification (SND) occurring inside thick biofilm in aerated reactors can be expressed in terms of simple mathematical equations based on Fick’s theory of diffusion. The fundamental concept behind the model is the formation of a diffusional gradient of substrates and dissolved oxygen within the biofilm, which creates stratified environments favoring the occurrence of two completely different processes. A simplified mathematical model is developed to analyze nitrogen removal via SND in moving bed bioreactors (MBBR), which considers the effects of biomass loss due to hydraulic shear, abrasion due to particle-to-particle collision, and endogenous decay. To estimate substrate removal in the biofilm, Monod growth kinetics is followed, and relevant boundary conditions are applied to obtain a solution using the second order differential equation. A computer program in conventional FORTRAN language is developed to predict effluent concentrations, implying that the same could be developed in other advanced languages. Experimental validation of the model confirms that analytically obtained data remain within a maximum deviation of 10%, and the total biofilm thickness is indicative of the formation of anoxic zones that support denitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Pynaert, K., Smets, B.F., Wyffels, S., Beheydt, D., Siciliano, S.D., & Verstraete, W. (2003). Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor. Applied and environmental microbiology, 69, 3626–3635. https://doi.org/10.1128/AEM.69.6.3626-3635.2003

  2. Madigan, M. T., & Martinko, J. M. (2006). Microorganisms and microbiology. Brock biology of microorganisms.11th ed. Upper Saddle River, New Jersey (NJ): Pearson Prentice Hall, 1–20.

  3. Lawrence, A. W., & McCarty, P. L. (1970). Unified basis for biological treatment design and operation. Journal of the Sanitary Engineering Division, 96,757–778. https://doi.org/10.1061/JSEDAI.0001126

    Article  Google Scholar 

  4. Strand, S. E., & McDonnell, A. J. (1985). Mathematical analysis of oxygen and nitrate consumption in deep microbial films. Water Research, 19, 345–352. https://doi.org/10.1016/0043-1354(85)90095-8

    Article  CAS  Google Scholar 

  5. Strand, S. E., McDonnell, A. J., & Unz, R. F. (1985). Concurrent denitrification and oxygen uptake in microbial films .Water Research, 19, 335–344. https://doi.org/10.1016/0043-1354(85)90094-6

  6. Zeng, R. J., Lemaire, R., Yuan, Z., & Keller, J. (2003). Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and bioengineering, 84, 170–178. https://doi.org/10.1002/bit.10744

    Article  CAS  Google Scholar 

  7. Jimenez, J., Dursun, D., Dold, P., Bratby, J., Keller, J., & Parker, D. (2010). Simultaneous nitrification-denitrification to meet low effluent nitrogen limits: Modeling, performance and reliability. Proceedings of the Water Environment Federation, 2010, 2404–2421.

    Article  Google Scholar 

  8. Pochana, K., & Keller, J. (1999). Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology, 39, 61–68. https://doi.org/10.1016/S0273-1223(99)00123-7

    Article  CAS  Google Scholar 

  9. Bhattacharya, R., & Mazumder, D. (2021). Evaluation of nitrification kinetics for treating ammonium nitrogen enriched wastewater in moving bed hybrid bioreactor. Journal of Environmental Chemical Engineering, 9, 104589.https://doi.org/10.1016/j.jece.2020.104589

  10. Kappeler, J., & Gujer, W. (1994). Development of a mathematical model for aerobic bulking. Water Research, 28, 303–310. https://doi.org/10.1016/0043-1354(94)90268-2

    Article  CAS  Google Scholar 

  11. Gonzalez-Gil, G., Seghezzo, L., Lettinga, G., & Kleerebezem, R. (2001). Kinetics and mass-transfer phenomena in anaerobic granular sludge. Biotechnology and Bioengineering, 73, 125–134. https://doi.org/10.1002/bit.1044

    Article  CAS  Google Scholar 

  12. Tartakovsky, B., & Guiot, S. R. (2004). Biofilm Modelling. Fundamentals of Cell Immobilisation Biotechnology (pp. 531–545). Springer.

    Chapter  Google Scholar 

  13. RaoBhamidimarri, S. M., & See, T. T. (1992). Shear loss characteristics of an aerobic biofilm. Water Science and Technology, 26, 595–600. https://doi.org/10.2166/wst.1992.0439

    Article  Google Scholar 

  14. Henze, M., Gujer, W., Mino, T., & van Loosdrecht, M. C. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA publishing.

  15. Pochana, K., Keller, J., & Lant, P. (1999). Model development for simultaneous nitrification and denitrification. Water Science and Technology, 39, 235–243. https://doi.org/10.1016/S0273-1223(98)00789-6

    Article  CAS  Google Scholar 

  16. Daigger, G. T., & Littleton, H. X. (2014). Simultaneous biological nutrient removal: A state-of-the-art review. Water Environment Research, 86, 245–257. https://doi.org/10.2175/106143013X13736496908555

    Article  CAS  Google Scholar 

  17. Daigger, G. T., Adams, C. D., & Steller, H. K. (2007). Diffusion of oxygen through activated sludge flocs: Experimental measurement, modeling, and implications for simultaneous nitrification and denitrification. Water environment research, 79, 375–387.https://doi.org/10.2175/106143006X111835

  18. Layer, M., Villodres, M. G., Hernandez, A., Reynaert, E., Morgenroth, E., & Derlon, N. (2020). Limited simultaneous nitrification-denitrification (SND) in aerobic granular sludge systems treating municipal wastewater: Mechanisms and practical implications. Water research, 7, 100048. https://doi.org/10.1016/j.wroa.2020.100048

  19. Halling-Sørensen, B., & Nielsen, S. N. (1996). A model of nitrogen removal from waste water in a fixed bed reactor using simultaneous nitrification and denitrification (SND). Ecological modelling, 87, 131–141. https://doi.org/10.1016/0304-3800(95)00025-9

  20. Sarioglu, M., Insel, G., Artan, N., & Orhon, D. (2009). Model evaluation of simultaneous nitrification and denitrification in a membrane bioreactor operated without an anoxic reactor. Journal of Membrane Science, 337, 17–27. https://doi.org/10.1016/j.memsci.2009.03.015

    Article  CAS  Google Scholar 

  21. He, S. B., Xue, G., & Wang, B. Z. (2009). Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor. Journal of hazardous materials, 168, 704–710. https://doi.org/10.1016/j.jhazmat.2009.02.099

    Article  CAS  Google Scholar 

  22. Seifi, M., & Fazaelipoor, M. H. (2012). Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor. Applied Mathematical Modelling, 36, 5603–5613. https://doi.org/10.1016/j.apm.2012.01.004

    Article  Google Scholar 

  23. Insel, G., Hocaoğlu, S. M., Cokgor, E. U., & Orhon, D. (2011). Modelling the effect of biomass induced oxygen transfer limitations on the nitrogen removal performance of membrane bioreactor. Journal of membrane science, 368, 54–63. https://doi.org/10.1016/j.memsci.2010.11.003

    Article  CAS  Google Scholar 

  24. Sarioglu, M., Insel, G., Artan, N., & Orhon, D. (2008). Modelling of long-term simultaneous nitrification and denitrification (SNDN) performance of a pilot scale membrane bioreactor. Water Science and Technology, 57, 1825–1833. https://doi.org/10.2166/wst.2008.121

    Article  CAS  Google Scholar 

  25. Orhon, D., & Artan, N. (1994). Modeling of activated sludge systems. Technomic Publ. Co.

    Google Scholar 

  26. Baek, S. H., & Kim, H. J. (2013). Mathematical model for simultaneous nitrification and denitrification (SND) in membrane bioreactor (MBR) under low dissolved oxygen (DO) concentrations. Biotechnology and bioprocess engineering, 18, 104–110. https://doi.org/10.1007/s12257-011-0419-6

  27. Zinatizadeh, A. A. L., & Ghaytooli, E. (2015). Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): Process modeling and optimization. Journal of the Taiwan Institute of Chemical Engineers, 53, 98–111. https://doi.org/10.1016/j.jtice.2015.02.034

    Article  CAS  Google Scholar 

  28. Williamson, K., & McCarty, P. L. (1976). A model of substrate utilization by bacterial films. Journal (Water Pollution Control Federation), 9–24.

  29. Metcalf, E. E., & Eddy, H. (2003). Wastewater engineer treatment disposal, reuse (4th ed.). McGraw Hill Publishers.

    Google Scholar 

  30. Rittmann, B. E., & McCarty, P. L. (1980). Model of steady-state-biofilm kinetics. Biotechnology and bioengineering, 22, 2343–2357. https://doi.org/10.1002/bit.260221110

    Article  CAS  Google Scholar 

  31. Sarkar, S., & Mazumder, D. (2017). Development of a simplified biofilm model. Water Science and Technology, 7, 1799–1806. https://doi.org/10.1007/s13201-015-0353-4

    Article  CAS  Google Scholar 

  32. Trulear, M. G., & Characklis, W. G. (1982). Dynamics of biofilm processes. Journal (Water Pollution Control Federation), 1288–1301.

  33. Rittman, B. E. (1982). The effect of shear stress on biofilm loss rate. Biotechnology and Bioengineering, 24, 501–506.

    Article  CAS  Google Scholar 

  34. Goswami, S., & Mazumder, D. (2019). Modelling and process design of Moving Bed Bioreactor (MBBR) for wastewater treatment—A review. Journal of the Indian Chemical Society, 96, 215–229.

    CAS  Google Scholar 

  35. Spielman, L. A. (1978). Hydrodynamic aspects of flocculation. The scientific basis of flocculation. 63–88. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9938-1_4

  36. Gjaltema, A., Van Der Marel, N., Van Loosdrecht, M. C. M., & Heijnen J. J. (1997). Adhesion and biofilm development on suspended carriers in airlift reactors: Hydrodynamic conditions versus surface characteristics. Biotechnology and Bioengineering, 55, 880–889. https://doi.org/10.1002/(SICI)1097-0290(19970920)55:63.0.CO;2-C

  37. Beverloo, W. A., & Tramper, J. (1994). Intensity of microcarrier collisions in turbulent flow. Bioprocess Engineering, 11, 177–184. https://doi.org/10.1007/BF00369627

    Article  CAS  Google Scholar 

  38. Zhu, S., & Chen, S. (2002). The impact of temperature on nitrification rate in fixed film biofilters. Aquacultural Engineering, 26, 221–237. https://doi.org/10.1016/S0144-8609(02)00022-5

    Article  Google Scholar 

  39. Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson, M. A. H. A. (2005). APHA: standard methods for the examination of water and wastewater. Centennial Edition., APHA, AWWA, WEF, Washington, DC.

  40. Herbert, D., Phipps, P. J., & Strange, R. E. (1971). Chapter III Chemical analysis of microbial cells. In Methods in microbiology, 5, 209–344.Academic press.

  41. Lin, Y. H., & Gu, Y. J. (2020). Denitrification kinetics of nitrate by a heterotrophic culture in batch and fixed-biofilm reactors. Processes, 8, 547.https://doi.org/10.3390/pr8050547

  42. Bhattacharya, R., & Mazumder, D. (2021). Simultaneous nitrification and denitrification in moving bed bioreactor and other biological systems. Bioprocess and Biosystems Engineering, 44, 635–652. https://doi.org/10.1007/s00449-020-02475-6

  43. San Diego-McGlone, M. L., Smith, S. V., & Nicolas, V. F. (2000). Stoichiometric interpretations of C: N: P ratios in organic waste materials. Marine Pollution Bulletin, 40, 325–330. https://doi.org/10.1016/S0025-326X(99)00222-2

    Article  Google Scholar 

  44. Liu T., He X., Jia G., Xu J., Quan X., & You S. (2020). Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater. Chemosphere, 247, 125831. https://doi.org/10.1016/j.chemosphere.2020.125831

Download references

Acknowledgements

The authors are thankful to the Ministry of Education, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have contributed towards the study’s conception and design. Manuscript preparation and experimental data collection were performed by Roumi Bhattacharya under the supervision of Debabrata Mazumder. Data analysis was done by both authors. The first draft of the manuscript was written by Roumi Bhattacharya. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Roumi Bhattacharya.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, R., Mazumder, D. Development of a Simplistic Mathematical Model for Simultaneous Nitrification and Denitrification in Moving Bed Bioreactor. Environ Model Assess 28, 635–650 (2023). https://doi.org/10.1007/s10666-023-09874-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-023-09874-5

Keywords

Navigation