Skip to main content

Advertisement

Log in

A New Approach for Smart Soil Erosion Modeling: Integration of Empirical and Machine-Learning Models

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Despite advances in artificial intelligence modeling, the lack of soil-erosion data and other watershed information still limits soil-erosion modeling. The limited number of parameters and a lack of evaluation criteria are major disadvantages to the use of empirical soil-erosion models. To overcome these limitations, we introduce a new approach that integrates empirical and artificial intelligence models. Erosion-prone locations that experience ≥ 16 tons/ha/year of erosion are identified using the RUSLE model. A soil-erosion map is prepared using 4 machine-learning algorithms: random forest (RF), artificial neural network (ANN), classification tree analysis (CTA), and generalized linear model (GLM). Thirteen factors (river buffer, aspect, slope, soil properties (texture, EC, depth, density, available water, hydrological groups), rainfall erosivity, land use, drainage density, and physiographic features) that influence the severity of soil erosion were compiled for the Talar watershed, Iran, for input into modeling processes in order to improve the accuracy of spatial prediction of erosion. The results reveal that the RF model has the highest prediction performance (AUC = 0.97, kappa = 0.78, accuracy = 0.93, and bias = 0.92). A soil-erosion distribution predicted by RF forecast that 53.42% of the Talar watershed had very low soil erosion risk, 12.84% had low erosion risk, 9.24% had moderate risk, 9.5% had high risk, and 14.98% had very high risk. The results indicate that slope angle, land use/land cover, elevation, and rainfall erosivity are the factors that have the greatest influence on the likelihood of soil erosion in the watershed. Curvature and topography position index (TPI) were removed from the analysis due to multicollinearity with other factors. The resulting modeling procedure can improve the identification of soil erosion hot spots, especially in watersheds lacking soil-erosion data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

(https://www.dropbox.com/home/Data%20EMA).

Materials Availability

(https://www.dropbox.com/home/Data%20EMA).

Code Availability

(https://www.dropbox.com/home/Data%20EMA).

References

  1. Ali, G., Birkel, C., Tetzlaff, D., Soulsby, C., McDonnell, J. J., & Tarolli, P. (2014). A comparison of wetness indices for the prediction of observed connected saturated areas under contrasting conditions. Earth Surface Processes and Landforms, 39(3), 399–413.

    Article  Google Scholar 

  2. Amine, M., Maaoui, E., Sfar, M., Rached, M., & Habib, M. (2012). Catena Sediment yield from irregularly shaped gullies located on the Fortuna lithologic formation in semi-arid area of Tunisia. CATENA, 93, 97–104.

    Article  Google Scholar 

  3. Arekhi, S., Darvishi, A., Shabani, A., Fathizad, H., & Ahmadai Abchin, S. (2012). Mapping soil erosion and sediment yield susceptibility using RUSLE, remote sensing and GIS (case study: Cham Gardalan Watershed, Iran). Journal of Advances in Enironmental Biology, 6(1), 109–124.

    Google Scholar 

  4. Atoma, H., Suryabhagavan, K. V., & Balakrishnan, M. (2020). Soil erosion assessment using RUSLE model and GIS in Huluka watershed. Central Ethiopia. Sustainable Water Resources Management, 6(1), 1–17.

    Google Scholar 

  5. Avand, M., Moradi, H. R., & Ramazanzadeh Lasboyee, M. (2021). Spatial prediction of future flood risk: An approach to the effects of climate change. Geosciences, 11(1), 25.

    Article  Google Scholar 

  6. Nearing, M. A., Foster, G. R., Lane, L. J., & Finkner, S. C. (1989). A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the ASAE, 32(5), 1587–1593.

  7. Beasley, D. B., Huggins, L. F., & Monke, A. (1980). ANSWERS: A model for watershed planning. Transactions of the ASAE, 23(4), 938–944.

  8. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.

  9. Avand, M., & Moradi, H. (2021). Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan Watershed, Iran. Advances in Space Research, 67(10), 3169–3186.

    Article  Google Scholar 

  10. Avand, M., Kuriqi, A., Khazaei, M., & Ghorbanzadeh, O. (2022). DEM resolution effects on machine learning performance for flood probability mapping. Journal of Hydro-environment Research, 40, 1–16.

    Article  Google Scholar 

  11. Bagio, B., Bertol, I., Wolschick, N. H., Schneiders, D., & Santos, M. A. D. N. D. (2017). Water erosion in different slope lengths on bare soil. Revista Brasileira de Ciência do Solo 41.

  12. Bouchnak, H., Felfoul, M. S., Boussema, M. R., & Snane, M. H. (2009). Slope and rainfall effects on the volume of sediment yield by gully erosion in the Souar lithologic formation (Tunisia). CATENA, 78(2), 170–177.

    Article  Google Scholar 

  13. Breiman, L. (1996). Stacked regressions. Machine learning, 24(1), 49–64.

    Google Scholar 

  14. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

    Article  Google Scholar 

  15. Breiman, L. (2017). Classification and regression trees. United Kingdom, Routledge.

    Book  Google Scholar 

  16. Chakrabortty, R., Pal, S. C., Sahana, M., Mondal, A., Dou, J., Pham, B. T., & Yunus, A. P. (2020). Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Natural Hazards, 104(2), 1259–1294.

    Article  Google Scholar 

  17. Chalise, D., Kumar, L., Spalevic, V., & Skataric, G. (2019). Estimation of sediment yield and maximum outflow using the IntErO model in the Sarada River Basin of Nepal. Water (Switzerland), 11(5), 952.

    Google Scholar 

  18. Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, X., Bian, H., Zhang, S., Pradhan, B., & Bin Ahmad, B. (2020). Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Science of the Total Environment, 701, 134979.

    Article  CAS  Google Scholar 

  19. Clubb, F. J., Mudd, S. M., Attal, M., Milodowski, D. T., & Grieve, S. W. D. (2016). The relationship between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport processes. Journal of Geophysical Research: Earth Surface, 121(10), 1724–1745.

    Article  Google Scholar 

  20. Engineering Services Company. (2002). Comprehensive study: Talar watershed. Mazandaran.

  21. Faulkner, H. (2013). Badlands in marl lithologies: A field guide to soil dispersion, subsurface erosion and piping-origin gullies. CATENA, 106, 42–53.

    Article  CAS  Google Scholar 

  22. Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R., Tiede, D., & Aryal, J. (2019). Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11(2), 196.

    Article  Google Scholar 

  23. Conoscenti, C., Di Maggio, C., & Rotigliano, E. (2008). Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily. Natural Hazards, 46(3), 287–305.

  24. Sun, W., Shao, Q., Liu, J., & Zhai, J. (2014). Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121, 151–163.

  25. Gourfi, A., Daoudi, L., & Shi, Z. (2018). The assessment of soil erosion risk, sediment yield and their controlling factors on a large scale: Example of Morocco. Journal of African Earth Sciences, 147, 281–299.

  26. Ghorbanzadeh, O., Crivellari, A., Ghamisi, P., Shahabi, H., & Blaschke, T. (2021). A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan). Scientific Reports, 11(1), 1–20.

    Article  Google Scholar 

  27. Hickey, R. (2000). Slope angle and slope length solutions for GIS. Cartography, 29(1), 1–8.

    Article  Google Scholar 

  28. Hosseinalizadeh, M., Kariminejad, N., Chen, W., Pourghasemi, H. R., Alinejad, M., Mohammadian Behbahani, A., & Tiefenbacher, J. P. (2019). Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). Geomorphology, 329, 184–193.

    Article  Google Scholar 

  29. Immitzer, M., Atzberger, C., & Koukal, T. (2012). Tree species classification with random forest using very high spatial resolution 8-band world View-2 satellite data. Remote Sensing, 4(9), 2661–2693.

    Article  Google Scholar 

  30. Isazadeh, M., Biazar, S. M., & Ashrafzadeh, A. (2017). Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters. Environmental Earth Sciences, 76(17), 1–14.

    Article  Google Scholar 

  31. De Jong, S. M. (1994). Application of reflective remote sensing for land degradation studies in a mediterranean environment (Utrecht: Netherlands Geographical Studies, University of Utrecht).

  32. Karamidehkordi, E. (2010). A country report: Challenges facing Iranian agriculture and natural resource management in the twenty-first century. Human Ecology, 38(2), 295–303.

    Article  Google Scholar 

  33. Kavian, A., Fathollah Nejad, Y., Habibnejad, M., & Soleimani, K. (2011). Modeling seasonal rainfall erosivity on a regional scale: A case study from Northeastern Iran. International Journal of Environmental Research, 5(4), 939–950.

    Google Scholar 

  34. Koirala, P., Thakuri, S., Joshi, S., & Chauhan, R. (2019). Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool, 9(4), 147.

    CAS  Google Scholar 

  35. Lei, X., Chen, W., Avand, M., Janizadeh, S., Kariminejad, N., Shahabi, H., Costache, R., Shahabi, H., Shirzadi, A., & Mosavi, A. (2020). GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sensing, 12(15), 2478.

    Article  Google Scholar 

  36. Lin, C.-Y., Lin, W.-T., & Chou, W.-C. (2002). Soil erosion prediction and sediment yield estimation: The Taiwan experience. Soil and Tillage Research, 68(2), 143–152.

    Article  Google Scholar 

  37. Mirchooli, F., Motevalli, A., Pourghasemi, H. R., Mohammadi, M., Bhattacharya, P., Maghsood, F. F., & Tiefenbacher, J. P. (2019). How do data-mining models consider arsenic contamination in sediments and variables importance? Environmental Monitoring and Assessment, 191(12), 1–19.

    Article  Google Scholar 

  38. Mohammadi, M., Darabi, H., Mirchooli, F., Bakhshaee, A., & Haghighi, A. T. (2020). Flood risk mapping and crop-water loss modeling using water footprint analysis in agricultural watershed, northern Iran. Natural Hazards, 105(2), 2007–2025.

    Article  Google Scholar 

  39. Mohammadi, M., Fallah, M., Kavian, A., Gholami, L., & Omidvar, E. (2017). The application of RUSLE model in spatial distributiondetermination of soil loss hazard, 3(4), 645–658.

    Google Scholar 

  40. Mohammed, S., Alsafadi, K., Talukdar, S., Kiwan, S., Hennawi, S., Alshihabi, O., Sharaf, M., & Harsanyie, E. (2020). Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sensing Applications: Society and Environment, 20(July), 100375.

    Article  Google Scholar 

  41. Moradi, H. R., Avand, M. T. & Janizadeh, S. (2019). Landslide susceptibility survey using modeling methods. In Elsevier, 259–276.

  42. Mosavi, A., Sajedi-Hosseini, F., Choubin, B., Taromideh, F., Rahi, G., & Dineva, A. A. (2020). Susceptibility mapping of soil water erosion using machine learning models. Water, 12(7).

  43. Mousavi, S. M., Golkarian, A., Naghibi, S. A., Kalantar, B., & Pradhan, B. (2017). GIS-based groundwater spring potential mapping using data mining boosted regression tree and probabilistic frequency ratio models in Iran. AIMS Geosciences, 3(1), 91–115.

    Article  Google Scholar 

  44. Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. D., & Mukhopadhyay, A. (2013). Evaluation of vertical accuracy of open source digital elevation model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205–217.

    Article  Google Scholar 

  45. Nyesheja, E. M., Chen, X., El-Tantawi, A. M., Karamage, F., Mupenzi, C., & Nsengiyumva, J. B. (2019). Soil erosion assessment using RUSLE model in the Congo Nile Ridge region of Rwanda. Physical Geography, 40(4), 339–360.

    Article  Google Scholar 

  46. Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area. Korea. Environmental Earth Sciences, 68(5), 1443–1464.

    Article  Google Scholar 

  47. Pham, B. T., Van Phong, T., Avand, M., Al-Ansari, N., Singh, S. K., Van Le, H., & Prakash, I. (2020). Improving voting feature intervals for spatial prediction of landslides. Mathematical Problems in Engineering, 2020.

  48. Pham, T. G., Degener, J., & Kappas, M. (2018). Integrated universal soil loss equation (USLE) and geographical information system (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research, 6(2), 99–110.

    Article  Google Scholar 

  49. Phinzi, K., Ngetar, N. S., & Ebhuoma, O. (2020). Soil erosion risk assessment in the Umzintlava catchment (T32E), Eastern Cape, South Africa, using RUSLE and random forest algorithm. South African Geographical Journal, 103(2), 139–162.

    Article  Google Scholar 

  50. Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, The Iranian Journal of Earth Sciences. Indian Academy of Sciences, 122(2):349–369.

  51. Pourghasemi, H. R., Moradi, H. R., Fatemi Aghda, S. M., Gokceoglu, C., & Pradhan, B. (2014). GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arabian Journal of Geosciences, 7(5), 1857–1878.

    Article  Google Scholar 

  52. Pournader, M., Ahmadi, H., Feiznia, S., Karimi, H., & Peirovan, H. R. (2018). Spatial prediction of soil erosion susceptibility: An evaluation of the maximum entropy model. Earth Science Informatics, 11(3), 389–401.

    Article  Google Scholar 

  53. Pradhan, B., Chaudhari, A., Adinarayana, J., & Buchroithner, M. F. (2012). Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island. Malaysia. Environmental Monitoring and Assessment, 184(2), 715–727.

    Article  Google Scholar 

  54. Rahmati, O., Avand, M., Yarian, P., Tiefenbacher, J. P., Azareh, A., & Bui, D. T. (2020). Assessment of gini, entropy, and ratio based classification trees for groundwater potential modeling and prediction. Geocarto International, 37(12), 3397–3415.

    Article  Google Scholar 

  55. Rahmati, O., Haghizadeh, A., Pourghasemi, H. R., & Noormohamadi, F. (2016). Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82(2), 1231–1258.

    Article  Google Scholar 

  56. Van Remortel, R. D., Maichle, R. W., & Hickey, R. J. (2004). Computing the LS factor for the revised universal soil loss equation through array-based slope processing of digital elevation data using a C++ executable. Computers & Geosciences, 30(9–10), 1043–1053.

    Article  Google Scholar 

  57. Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: Revised universal soil loss equation. Journal of soil and Water Conservation, 46(1), 30–33.

    Google Scholar 

  58. Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157(1–4), 287–306.

    Article  Google Scholar 

  59. Ruysschaert, G., Poesen, J., Verstraeten, G., & Govers, G. (2007). Soil loss due to harvesting of various crop types in contrasting agro-ecological environments. Agriculture, ecosystems & environment, 120, 153–165.

    Article  Google Scholar 

  60. Atkinson, P., Jiskoot, H., Massari, R., & Murray, T. (1998). Generalized linear modelling in geomorphology. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 23(13), 1185–1195.

  61. Sadeghi, S. H., Zabihi, M., Vafakhah, M., & Hazbavi, Z. (2017). Spatiotemporal mapping of rainfall erosivity index for different return periods in Iran. Natural Hazards, 87(1), 35–56.

    Article  Google Scholar 

  62. Saha, S., Gayen, A., Pourghasemi, H. R., & Tiefenbacher, J. P. (2019). Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district. India. Environmental Earth Sciences, 78(23), 1–18.

    Google Scholar 

  63. Samanta, R. K., Bhunia, G. S., & P. K. shit. (2016). Spatial modelling of soil erosion susceptibility mapping in lower basin of Subarnarekha river (India) based on geospatial techniques. Modeling Earth Systems and Environment, 2(2), 1–13.

    Article  Google Scholar 

  64. Shahabi, H., Jarihani, B., Piralilou, S. T., Chittleborough, D., Avand, M., & Ghorbanzadeh, O. (2019). A semi-automated object-based gully networks detection using different machine learning models: A case study of bowen catchment, Queensland. Australia. Sensors (Switzerland), 19(22), 4893.

    Article  Google Scholar 

  65. Sharma, A., Tiwari, K. N., & Bhadoria, P. B. S. (2011). Effect of land use land cover change on soil erosion potential in an agricultural watershed, 173(1), 789–801.

    Google Scholar 

  66. Tadesse, L., Suryabhagavan, K. V., Sridhar, G., & Legesse, G. (2017). Land use and land cover changes and soil erosion in Yezat Watershed, North Western Ethiopia. International soil and water conservation research, 5(2), 85–94.

    Article  Google Scholar 

  67. Tadesse, T. B., & Tefera, S. A. (2020). Comparing potential risk of soil erosion using RUSLE and MCDA techniques in Central Ethiopia. Modeling Earth Systems and Environment, 7(3), 1713–1725.

    Article  Google Scholar 

  68. Tang, B., Jiao, J., Zhang, Y., Chen, Y., Wang, N., & Bai, L. (2020). The magnitude of soil erosion on hillslopes with different land use patterns under an extreme rainstorm on the Northern Loess Plateau. China. Soil and Tillage Research, 204, 104716.

    Article  Google Scholar 

  69. Tang, Q., Xu, Y., & Bennett, S. J. (2015). Assessment of soil erosion using RUSLE and GIS : A case study of the Yangou watershed in the Loess Plateau. China. Environmental Earth Sciences, 73, 1715–1724.

    Article  Google Scholar 

  70. Tavakkoli Piralilou, S., Einali, G., Ghorbanzadeh, O., Nachappa, T. G., Gholamnia, K., Blaschke, T., & Ghamisi, P. (2022). A Google Earth Engine approach for wildfire susceptibility prediction fusion with remote sensing data of different spatial resolutions. Remote Sensing, 14(3), 672.

    Article  Google Scholar 

  71. Towfiqul Islam, A. R. M., Talukdar, S., Mahato, S., Kundu, S., Eibek, K. U., Pham, Q. B., Kuriqi, A., & Linh, N. T. T. (2020). Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3), 101075.

    Article  Google Scholar 

  72. Troeh, F. R., Hobbs, J. A., & Donahue, R. L. (1980). Soil and water conservation for productivity and environmental protection. Prentice-Hall, Inc.

  73. Vaezi, A. R., Bahrami, H. A., Sadeghi, S. H. R., & Mahdian, M. H. (2008). Evaluating erosivity indices of the USLE, MUSLE, RUSLE and USLE-M models in soils of a semi-arid region in northwest of Iran. 25–37.

  74. Silva, R., Baptista, P., Veloso-Gomes, F., Coelho, C., & Taveira-Pinto, F. (2009). Sediment grain size variation on a coastal stretch facing the North Atlantic (NW Portugal). Journal of coastal research, 762–766.

  75. Vaezi, A. R., & Sadeghi, S. H. R. (2011). Evaluating the RUSLE model and developing an empirical equation for estimating soil erodibility factor in a semi-arid region. Spanish Journal of Agricultural Research, 3, 912–923.

    Article  Google Scholar 

  76. Vahidnia, M. H., Alesheikh, A. A., Alimohammadi, A., & Hosseinali, F. (2010). A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Computers and Geosciences, 36(9), 1101–1114.

    Article  Google Scholar 

  77. Vanacker, V., Ameijeiras-mariño, Y., Schoonejans, J., Cornélis, J., Minella, J. P. G., Lamouline, F., Vermeire, M., Campforts, B., Robinet, J., Van De Broek, M., Delmelle, P., & Opfergelt, S. (2019). Land use impacts on soil erosion and rejuvenation in Southern Brazil. CATENA, 178(March), 256–266.

    Article  CAS  Google Scholar 

  78. Wang, D., Fu, B., Zhao, W., Hu, H., & Wang, Y. (2008). Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau. China, 72, 29–36.

    Google Scholar 

  79. Wang, G., Wente, S., Gertner, G. Z., & Anderson, A. (2002). Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat Thematic Mapper images. International Journal of Remote Sensing, 23(18), 3649–3667.

    Article  Google Scholar 

  80. Wischmeier, W. H. (1976). Use and misuse of the universal soil loss equation. Journal of soil and water conservation, 31(1), 5–9.

    Google Scholar 

  81. Wulf, H., Bookhagen, B., & Scherler, D. (2010). Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology, 118(1–2), 13–21.

    Article  Google Scholar 

  82. Yousefi, S., Avand, M., Yariyan, P., Pourghasemi, H. R., Keesstra, S., Tavangar, S., & Tabibian, S. (2020). A novel GIS-based ensemble technique for rangeland downward trend mapping as an ecological indicator change. Ecological Indicators, 117, 106591.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by [M. Avand], [M. Mohammadi], and [F. Mirchouli]. The first draft of the manuscript was written by [M. Avand] and [M. Mohammadi]. The review and editing of the article were done by [Kavian] and [Tiefenbacher]. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammadtaghi Avand.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avand, M., Mohammadi, M., Mirchooli, F. et al. A New Approach for Smart Soil Erosion Modeling: Integration of Empirical and Machine-Learning Models. Environ Model Assess 28, 145–160 (2023). https://doi.org/10.1007/s10666-022-09858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-022-09858-x

Keywords

Navigation