Skip to main content
Log in

Conceptual Stormwater Quality Models by Alternative Linear and Non-linear Formulations: an Event-Based Approach

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Different linear transfer functions (TFs) models are compared to the traditional non-linear rating curve (RC) model in a novel event-based exploratory frame. This approach aims to scrutinize for alternative representations of the stormwater TSS load dynamics at the output of a 185-ha urban catchment, when not considering explicitly a virtual state of available pollutant mass accumulated during the dry weather and subsequently washed by rainfall (as a simplification of the widespread accumulation/wash-off model). The advantages of using TFs remain unproved compared to the RC model, which shows more performant results in terms of parsimony and simulation uncertainties with a dataset of 255 calibration and 110 verification online-monitored rainfall events. This can be explained by the non-linear properties of RC. Modeling performance when rainfall is used as the input remains lower than for the case of flow rate (from mean NS of 0.6 to 0.4 in verification events). On the other hand, the RC by itself can be still considered an unsatisfactory model (e.g., NS about 0.6 in verification with the flow rate as input), suggesting the lack of an essential missing process in this formulation. However, this missing process (if there is one) might not be necessarily linked to a time-decreasing state of available pollutant mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used in this work have been collected and made available by the OTHU project in Lyon, France (see www.othu.org).

Code Availability

Not applicable.

References

  1. Sartor, J. D., & Boyd, G. B. (1972). Water pollution aspects of street surface contaminants. Washington DC: US Environmental Protection Agency.

    Google Scholar 

  2. Deletic, A., Dotto, C., Fletcher, T. D., McCarthy, D. T., Bertrand-Krajewski, J. L., Rauch, W., Kleidorfer, M., Freni, G., Mannina, G., & Tait, S. (2009). Defining uncertainties in modelling of urban drainage systems. 8th International Conference on Urban Drainage Modelling (pp. 7–11). Tokyo.

    Google Scholar 

  3. Bonhomme, C., & Petrucci, G. (2016). Should we trust build-up/wash-off water quality models at the scale of urban catchments? Water Research, 108, 422–431. https://doi.org/10.1016/j.watres.2016.11.027

    Article  CAS  Google Scholar 

  4. Sandoval, S., Vezzaro, L., & Bertrand-Krajewski, J. L. (2018). Revisiting conceptual stormwater quality models by reconstructing virtual state variables. Water Science and Technology, 78, 655–663. https://doi.org/10.2166/wst.2018.337

    Article  Google Scholar 

  5. Huber, W. C., Dickinson, R. E., Barnwell, T. O., Jr., & Branch, A. (1988). Storm water management model, Version 4. Environmental Protection Agency.

    Google Scholar 

  6. Kanso, A., Tassin, B., & Chebbo, G. (2005). A benchmark methodology for managing uncertainties in urban runoff quality models. Water Science and Technology, 51, 163–170. https://doi.org/10.2166/wst.2005.0044

    Article  CAS  Google Scholar 

  7. Young, P. C. (2013). Hypothetico-inductive data-based mechanistic modeling of hydrological systems. Water Resources Research, 49, 915–935. https://doi.org/10.1002/wrcr.20068

    Article  Google Scholar 

  8. Young, P. C., & Garnier, H. (2006). Identification and estimation of continuous-time, data-based mechanistic (DBM) models for environmental systems. Environmental Modelling and Software, 21, 1055–1072. https://doi.org/10.1016/j.envsoft.2005.05.007

    Article  Google Scholar 

  9. Davis, P. M., & Atkinson, T. C. (2000). Longitudinal dispersion in natural channels: 3. An aggregated dead zone model applied to the River Severn, U.K. Hydrology and Earth System Sciences, 4, 373–381. https://doi.org/10.5194/hess-4-373-2000

    Article  Google Scholar 

  10. Crobeddu, E., & Bennis, S. (2011). A new model for simulating TSS washoff in urban areas. Applied and Environmental Soil Science, 2011, 1–9. https://doi.org/10.1155/2011/318765

    Article  Google Scholar 

  11. Sun, S., Barraud, S., Castebrunet, H., Aubin, J. B., & Marmonier, P. (2015). Long-term stormwater quantity and quality analysis using continuous measurements in a French urban catchment. Water Research, 85, 432–442. https://doi.org/10.1016/j.watres.2015.08.054

    Article  CAS  Google Scholar 

  12. ISO/IEC Guide 98–1. (2009). Uncertainty of Measurement – Part 1: Introduction to the expression of the uncertainty in measurement. Geneva: ISO.

    Google Scholar 

  13. Young, P. C. (1998). Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. Environmental Modelling and Software, 13, 105–122. https://doi.org/10.1016/S1364-8152(98)00011-5

    Article  Google Scholar 

  14. Freni, G., Mannina, G., & Viviani, G. (2009). Uncertainty assessment of an integrated urban drainage model. Journal of Hydrology, 373, 392–404. https://doi.org/10.1016/j.jhydrol.2009.04.037

    Article  Google Scholar 

  15. Egodawatta, P., Thomas, E., & Goonetilleke, A. (2009). Understanding the physical processes of pollutant build-up and wash-off on roof surfaces. Science of the Total Environment, 407, 1834–1841. https://doi.org/10.1016/j.scitotenv.2008.12.027

    Article  CAS  Google Scholar 

  16. Pedregal, D. J., Taylor, C. J., & Young, P. C. (2007). System identification, time series analysis and forecasting. The Captain Toolbox. Handbook V2.0. Lancaster: Centre for Research on Environmental Systems and Statistics (CRES).

    Google Scholar 

  17. Vrugt, J. A. (2016). Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environmental Modelling and Software, 75, 273–316. https://doi.org/10.1016/j.envsoft.2015.08.013

    Article  Google Scholar 

  18. Sandoval, S., & Bertrand-Krajewski, J.-L. (2019). From marginal to conditional probability functions of parameters in a conceptual rainfall–runoff model: An event-based approach. Hydrological Sciences Journal, 64(11), 1340–1350. https://doi.org/10.1080/02626667.2019.1635696

    Article  Google Scholar 

  19. Beck, J., & Arnold, K. (1977). Parameter Estimation in Engineering and Science. John Wiley & Sons.

    Google Scholar 

  20. Dotto, C. B. S., Deletic, A., & McCarthy, D. T. (2013). Uncertainty analysis in urban drainage modelling: Should we break our back for normally distributed residuals? Water Science and Technology, 68, 1271–1279. https://doi.org/10.2166/wst.2013.360

    Article  CAS  Google Scholar 

  21. Wu, X., Marshall, L., & Sharma, A. (2021). Quantifying input error in hydrologic modeling using the Bayesian error analysis with reordering (BEAR) approach. Journal of Hydrology, 598, 126202. https://doi.org/10.1016/j.jhydrol.2021.126202

    Article  Google Scholar 

  22. Ammann, L., Fenicia, F., & Reichert, P. (2019). A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation. Hydrology and Earth System Sciences, 23, 2147–2172. https://doi.org/10.5194/hess-23-2147-2019

    Article  Google Scholar 

  23. Reyes-Silva, J. D., Bangura, E., Helm, B., Benisch, J., & Krebs, P. (2020). The role of sewer network structure on the occurrence and magnitude of combined sewer overflows (CSOs). Water. https://doi.org/10.3390/w12102675

    Article  Google Scholar 

  24. Chang, T.-J., Wang, C.-H., Chen, A. S., & Djordjević, S. (2018). The effect of inclusion of inlets in dual drainage modelling. Journal of Hydrology, 559, 541–555. https://doi.org/10.1016/j.jhydrol.2018.01.066

    Article  Google Scholar 

  25. Broekhuizen, I., Leonhardt, G., & Viklander, M. (2021). Reducing uncertainties in urban drainage models by explicitly accounting for timing errors in objective functions. Urban Water Journal, 18, 740–749. https://doi.org/10.1080/1573062X.2021.1928244

    Article  Google Scholar 

  26. Kim, S. S. H., Marshall, L. A., Hughes, J. D., Sharma, A., & Vaze, J. (2021). Jointly calibrating hydrologic model parameters and state adjustments. Water Resources Research. https://doi.org/10.1029/2020WR028499

    Article  Google Scholar 

  27. Kasiviswanathan, K. S., He, J., Tay, J. H., & Sudheer, K. P. (2019). Enhancement of model reliability by integrating prediction interval optimization into hydrogeological modeling. Water Resources Management, 33, 229–243. https://doi.org/10.1007/s11269-018-2099-x

    Article  Google Scholar 

  28. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second International Symposium on Information Theory (pp. 267–281). Budapest.

    Google Scholar 

  29. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  30. Young, P. C. (1989). Recursive estimation, forecasting, and adaptive control. Control and Dynamic Systems, 30, 119–165. https://doi.org/10.1016/B978-0-12-012730-6.50011-0

    Article  Google Scholar 

  31. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models Part 1 - A discussión of principles. Journal of Hydrology, 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  32. Jin, X., Xu, C. Y., Zhang, Q., & Singh, V. P. (2010). Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383, 147–155. https://doi.org/10.1016/j.jhydrol.2009.12.028

    Article  Google Scholar 

  33. Ye, L., Zhou, J., Zeng, X., Guo, J., & Zhang, X. (2014). Multi-objective optimization for construction of prediction interval of hydrological models based on ensemble simulations. Journal of Hydrology, 519, 925–933. https://doi.org/10.1016/j.jhydrol.2014.08.026

    Article  Google Scholar 

  34. Burnham, K. P., & Anderson, D. R. (2001). Kullback-Leibler information as a basis for strong inference in ecological studies. Wildlife research, 28(2), 111–119.

    Article  Google Scholar 

  35. Manz, B. J., Rodríguez, J. P., Maksimović, Č, & McIntyre, N. (2013). Impact of rainfall temporal resolution on urban water quality modelling performance and uncertainties. Water Science and Technology, 68, 68–75. https://doi.org/10.2166/wst.2013.224

    Article  Google Scholar 

  36. Biondi, D., Freni, G., Iacobellis, V., Mascaro, G., & Montanari, A. (2012). Validation of hydrological models: Conceptual basis, methodological approaches and a proposal for a code of practice. Physics and Chemistry of the Earth, 42–44, 70–76. https://doi.org/10.1016/j.pce.2011.07.037

    Article  Google Scholar 

  37. Vezzaro, L., & Mikkelsen, P. S. (2012). Application of global sensitivity analysis and uncertainty quantification indynamic modelling of micropollutants in stormwater runoff. Environmental Modelling and Software, 27–28, 40–51. https://doi.org/10.1016/j.envsoft.2011.09.012

    Article  Google Scholar 

  38. Ye, Q., & Ahammed, F. (2020). Quantification of relationship between annual daily maximum temperature and annual daily maximum rainfall in South Australia. Atmospheric and Oceanic Science Letters, 13, 286–293. https://doi.org/10.1080/16742834.2020.1755599

    Article  Google Scholar 

  39. Sandoval, S., & Bertrand-Krajewski, J.-L. (2016). Influence of sampling intake position on suspended solid measurements in sewers: Two probability/time-series-based approaches. Environmental Monitoring and Assessment, 188, 347. https://doi.org/10.1007/s10661-016-5335-y

    Article  Google Scholar 

  40. Daly, E., Bach, P. M., & Deletic, A. (2014). Stormwater pollutant runoff: A stochastic approach. Advances in Water Resources, 74, 148–155. https://doi.org/10.1016/j.advwatres.2014.09.003

    Article  CAS  Google Scholar 

  41. Marshall, L., Nott, D., & Sharma, A. (2007). Towards dynamic catchment modelling: A Bayesian hierarchical mixtures of experts framework. Hydrological Processes, 21, 847–861. https://doi.org/10.1002/hyp.6294

    Article  Google Scholar 

  42. Huang, Y., & Liu, L. (2010). Multiobjective water quality model calibration using a hybrid genetic algorithm and neural network-based approach. Journal of Environmental Engineering, 136, 1020–1031. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000237

    Article  CAS  Google Scholar 

  43. Gamerith, V., Gruber, G., & Muschalla, D. (2011). Single- and multievent optimization in combined sewer flow and water quality model calibration. Journal of Environmental Engineering, 137, 551–558. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000356

    Article  CAS  Google Scholar 

  44. Sikorska, A. E., Del Giudice, D., Banasik, K., & Rieckermann, J. (2015). The value of streamflow data in improving TSS predictions - Bayesian multi-objective calibration. Journal of Hydrology, 530, 241–254. https://doi.org/10.1016/j.jhydrol.2015.09.051

    Article  Google Scholar 

  45. Vaze, J., & Chiew, F. H. S. (2002). Experimental study of pollutant accumulation on an urban road surface. Urban Water, 4, 379–389. https://doi.org/10.1016/S1462-0758(02)00027-4

    Article  CAS  Google Scholar 

  46. McCarthy, D. T., Hathaway, J. M., Hunt, W. F., & Deletic, A. (2012). Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff. Water Research, 46, 6661–6670. https://doi.org/10.1016/j.watres.2012.01.006

    Article  CAS  Google Scholar 

  47. Mannina, G., & Viviani, G. (2010). An urban drainage stormwater quality model: Model development and uncertainty quantification. Journal of Hydrology, 381, 248–265. https://doi.org/10.1016/j.jhydrol.2009.11.047

    Article  CAS  Google Scholar 

  48. Métadier, M. (2011). Traitement et analyse de séries chronologiques continues de turbidité pour la formulation et le test de modèles des rejets urbains par temps de pluie. University of INSA.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the OTHU project in Lyon, France (www.othu.org) for providing the dataset and to the Master in Hydrosystems program at Pontificia Universidad Javeriana (Bogota, Colombia) for the given support. Santiago Sandoval is grateful to MINCIENCIAS (Colombian Institute for the Development of Science and Technology) for funding his Ph.D. studies in France. The authors are also grateful to the anonymous reviewers for their valuable comments that led to significantly improve the quality of this manuscript.

Funding

This work was supported by MINCIENCIAS (Colombian Institute for the Development of Science and Technology).

Author information

Authors and Affiliations

Authors

Contributions

Santiago Sandoval and Jean-Luc Bertrand-Krajewski conceived of the presented idea, developed the theory, and performed the computations. Felipe Peña-Heredia also contributed to the findings of this work. All authors contributed to the final manuscript.

Corresponding author

Correspondence to Felipe Peña-Heredia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandoval, S., Bertrand-Krajewski, JL. & Peña-Heredia, F. Conceptual Stormwater Quality Models by Alternative Linear and Non-linear Formulations: an Event-Based Approach. Environ Model Assess 27, 817–830 (2022). https://doi.org/10.1007/s10666-022-09838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-022-09838-1

Keywords

Navigation