Skip to main content

Advertisement

Log in

Modeling and Mapping of Soil Salinity and Alkalinity Using Remote Sensing Data and Topographic Factors: a Case Study in Iran

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Soil salinity and alkalinity seriously threaten crop production, soil productivity, and sustainable agriculture, especially in arid and semi-arid areas, leading to land degradation. Therefore, the spatial distribution of these parameters is really important for the successful management of such areas. The salinity and sodium adsorption ratio (SAR) of soil surface have been modeled in this article. Auxiliary data were terrain attributes derived from the digital elevation model (DEM), remote sensing spectral bands, and indices of vegetation and salinity derived from the Landsat 8 OLI satellite. In total, 118 soil samples were collected from a depth of 0–15 cm in homogenous units at Doviraj plain in the southern part of Ilam province, western Iran. Saturated electrical conductivity (ECe), SAR, and other soil properties were analyzed and calculated. To model ECe and SAR parameters with the auxiliary data, stepwise multiple linear regression (SMLR) and random forest (RF) regression were applied. The highest accuracy was obtained through the RF model with validation coefficient of determination (R2) = 0.82 and 0.83 and validation root mean square error (RMSE) = 7.40 dS/m and 11.20 for ECe and SAR, respectively. Furthermore, results indicated that the strongest influence on the prediction of soil salinity was obtained with Band10, principal component analysis (PC3), vertical distance to channel network (VDCN), and analytical hill-shading (AH). Also, Band10, Band11, flow accumulation (FA), and topographic wetness index (TWI) were the important covariates in alkalinity prediction through the RF model. Finally, it is suggested that similar techniques can be used to map and monitor soil salinity and alkalinity in other parts of arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Material Availability

Not applicable.

Data Availability

Not applicable.

Code Availability

R software (version 3.1.2) is available at https://cran.r-project.org/bin/windows/base/old/3.1.2/.

References

  1. Li, H. Y., Webster, R., & Shi, Z. (2015). Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited. Geoderma, 237, 71–77. https://doi.org/10.1016/j.geoderma.2014.08.008

    Article  CAS  Google Scholar 

  2. Gorji, T., Sertel, E., & Tanik, A. (2017). Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecological Indicators, 74, 384–391. https://doi.org/10.1016/j.ecolind.2016.11.043

    Article  CAS  Google Scholar 

  3. Shahrayini, E., Fallah, M., Shabanpour, M., Ebrahimi, E., & Saadat, S. (2018). Investigation of soil compaction on yield and agronomic traits of wheat under saline and non-saline soils. Archives of Agronomy and Soil Science, 64, 1329–1340. https://doi.org/10.1080/03650340.2018.1431832

    Article  CAS  Google Scholar 

  4. FAO. (2008). The State of Food Insecurity in the World. Food and Agriculture Organization of the United Nations ISBN 978-92-5-106049-0.

    Google Scholar 

  5. Gorji, T., Alganci, U., Sertel, E., & Tanik, A. (2018). Comparing two different spatial interpolation approaches to characterize spatial variability of soil properties in Tuz Lake Basin – Turkey. In Environmental and health inequities-socio-economic determinants of exposure. https://www.researchgate.net/publication/320755488

  6. Abuelgasima, A., & Ammad, R. (2019). Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sensing Applications: Society and Environment, 13, 415–442. https://doi.org/10.1016/j.rsase.2018.12.010

    Article  Google Scholar 

  7. Periasamy, S., & Shanmugam, R. S. (2017). Multispectral and microwave remote sensing models to survey soil moisture and salinity. Land Degradation & Development, 28, 1412–1425. https://doi.org/10.1002/ldr.2661

    Article  Google Scholar 

  8. Allbed, A., & Kumar, L. (2013). Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: A review. Advances in Remote Sensing, 2, 373–385. https://doi.org/10.4236/ars.2013.24040

    Article  Google Scholar 

  9. Allbed, A., Kumar, L., & Aldakheel, Y. Y. (2014). Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma, 230, 1–8. https://doi.org/10.1016/j.geoderma.2014.03.025

    Article  Google Scholar 

  10. Fan, X., Weng, Y., & Tao, J. (2016). Towards decadal soil salinity mapping using Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 52, 32–41.

    Article  Google Scholar 

  11. Bouaziz, M., Matschullat, J., & Gloaguen, R. (2011). Improved remote sensing detection of soil salinity from semi-arid climate in Northeast Brazil. Comptes Rendus Geoscience, 343, 795–803. https://doi.org/10.1016/j.crte.2011.09.003

    Article  Google Scholar 

  12. Allbed, A., Kumar, L., & Sinha, P. (2017). Soil salinity and vegetation cover change detection from multi-temporal remotely sensed imagery in Al Hassa Oasis in Saudi Arabia. Geocarto International, 33(8), 830–846. https://doi.org/10.1080/10106049.2017.1303090

    Article  Google Scholar 

  13. Bannari, A., Guedon, A. M., El-Harti, A., Cherkaoui, F. Z., & El-Ghmari, A. (2008). Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Communications in Soil Science and Plant Analysis Journal, 39(19–20), 2795–2811. https://doi.org/10.1080/00103620802432717

    Article  CAS  Google Scholar 

  14. Gorji, T., Yıldırım, A., Sertel, E., & Tanık, A. (2019). Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes. International Journal of Environment and Geoinformatics, 6(1), 33–49. https://doi.org/10.30897/ijegeo.500452

  15. Mulder, V. L., de Bruin, S., Schaepman, M. E., & Mayr, T. R. (2011). The use of remote sensing in soil and terrain mapping: A review. Geoderma, 162, 1–19. https://doi.org/10.1016/j.geoderma.2010.12.018

    Article  CAS  Google Scholar 

  16. Wang, J., Liu, Y., Wang, S., Liu, H., & Fu, G. (2019). Spatial distribution of soil salinity and potential implications for soil management in the Manas River watershed China. Soil Use and Management, 36, 93–163.

    Article  Google Scholar 

  17. Metelka, V., Baratoux, L., Jessell, M. W., Barth, A., Ježek, J., & Naba, S. (2018). Automated regolith landform mapping using airborne geophysics and remote sensing data Burkina Faso West Africa. Remote Sensing of Environment, 204, 964–978. https://doi.org/10.1016/j.rse.2017.08.004

    Article  Google Scholar 

  18. Juhos, K., Szabo, S., & Ladanyi, M. (2015). Influence of soil properties on crop yield: A multivariate statistical approach. International Agrophysics, 29(4), 433–440. https://doi.org/10.1515/intag-2015-0049

    Article  CAS  Google Scholar 

  19. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  20. Wang, J., Chen, Y., Ding, J., Abulimiti, A., & Cai, L. (2018). Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy Ebinur Lake Wetland Northwest China. PeerJ, 6, e4703. https://doi.org/10.7717/peerj.4703

    Article  CAS  Google Scholar 

  21. Grimm, R., et al. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island - Digital soil mapping using random forests analysis. Geoderma, 146(1–2), 102–113. https://doi.org/10.1016/j.geoderma.2008.05.008

    Article  CAS  Google Scholar 

  22. Souza, E. D., et al. (2016). Pedotransfer functions to estimate bulk density from soil properties and environmental covariates: Rio Doce basin. Scientia Agricola, 73(6), 525–534. https://doi.org/10.1590/0103-9016-2015-0485

    Article  Google Scholar 

  23. Belgiu, M., & Dragut, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

    Article  Google Scholar 

  24. Wu, W., Zucca, C., Karam, F., & Liu, G. (2016). Enhancing the performance of regional land cover mapping. International Journal of Earth Observation and Geoinformation, 52, 422–432. https://doi.org/10.1016/j.jag.2016.07.014

    Article  CAS  Google Scholar 

  25. Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th ed.). Department of Agriculture Natural resources conservation service.

    Google Scholar 

  26. Sparks, D. L., Page, A. L., Helmke, P. A., Leoppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston. G. T., & Summer, M. E. (1996). Methods of soil analysis soil science society of American Journal. Book Series No. 5. ASA and SSSA, Madison, Wisconsin.

  27. Suarez, D. L. (1981). Relation between pHc and sodium adsorption ratio (SAR) and an alternative method of estimating SAR of soil or drainage waters. Soil Science Society of American Journal, 45, 469–475.

    Article  CAS  Google Scholar 

  28. Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., Ge, X., Zhang, Z., Wang, Y., Yang, X., et al. (2021). Machine learning-based detection of soil salinity in an Arid Desert Region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of The Total Environment, 707, 136092. https://doi.org/10.1016/j.scitotenv.2019.136092

    Article  CAS  Google Scholar 

  29. Taghizadeh-Mehrjardi, R., et al. (2016). Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Research and Management, 30(1), 49–64. https://doi.org/10.1080/15324982.2015.1046092

    Article  Google Scholar 

  30. Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., & Malone, B. P. (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15–28. https://doi.org/10.1016/j.geoderma.2013.07.020

    Article  CAS  Google Scholar 

  31. Thelin, G. P., & Pike, R. J. (1991). Landforms of the conterminous United States-a digital shaded-relief portrayal. Calfornia: USGS Publications Warehouse. https://doi.org/10.3133/i2206 Manual of US Geological Survey Map I-2206.

    Book  Google Scholar 

  32. Oguchia, T., Aokib, T., & Matsutac, N. (2003). Identification of an active fault in the Japanese Alps from DEM-based hill shading. Computers & Geosciences, 29, 885–891. https://doi.org/10.1016/S0098-3004(03)00083-9

    Article  Google Scholar 

  33. National Cartographic Center. Tehran, Iran: Research Institute of NCC. https://www.ncc.gov.ir/en/units/Technology_deputy_data_presentation/Cartography_and_National_Atlases

  34. Evans, S. (1972). General geomorphometry derivatives of altitude and descriptive statistics. In R. J. Chorley (Ed.), Spatial Analysis in Geomorphology (pp. 17–90). Methuen & Co Ltd.

    Google Scholar 

  35. Wang, L., & Liu, H. (2006). An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modeling. International Journal of Geographical Information Science, 20(2), 193–213. https://doi.org/10.1080/13658810500433453

    Article  CAS  Google Scholar 

  36. McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1), 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4

    Article  Google Scholar 

  37. Gallant, J. C., & Dowling, T. I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 39, 1347–1360.

    Article  Google Scholar 

  38. Peng, J., Biswas, A., Jiang, Q., Zhao, R., Hu, J., Hu, B., & Shi, Z. (2019). Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province China. Geoderma, 337, 1309–1319. https://doi.org/10.1016/j.geoderma.2018.08.006

    Article  Google Scholar 

  39. Zhang, C., Lu, D., Chen, X., Zhang, Y., Maisupova, B., & Tao, Y. (2016). The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote Sensing of Environment, 175, 271–281. https://doi.org/10.1016/j.rse.2016.01.002

    Article  Google Scholar 

  40. Kumari, N., & Srivastava, A. (2020). An approach for estimation of evapotranspiration by standardizing parsimonious method. Agricultural Research, 9, 301–309. https://doi.org/10.1007/s40003-019-00441-7

    Article  Google Scholar 

  41. Khan, N. M., Rastoskuev, V. V., Sato, Y., & Shiozawa, S. (2005). Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agriculture Water Managment, 77(1–3), 96–109. https://doi.org/10.1016/j.agwat.2004.09.038

    Article  Google Scholar 

  42. Diek, S., Fornallaz, F., Schaepman, M. E., & de Jong, R. (2017). Barest pixel composite for agricultural areas using Landsat time series. Remote Sensing, 9(12), 1245. https://doi.org/10.3390/rs9121245

    Article  Google Scholar 

  43. Aburas, M. M., Abdullah, S. H., Ramli, M. F., & Ash’aari, Z.H. (2015). Measuring land cover change in Seremban, Malaysia Using NDVI Index. Procedia Environmental Sciences, 30, 238–243. https://doi.org/10.1016/j.proenv.2015.10.043

    Article  Google Scholar 

  44. Hunt, E. R., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote sensing leaf chlorophyll content using a visible band index. Agronomy Journal, 103, 1090–1099. https://doi.org/10.2134/agronj2010.0395

    Article  Google Scholar 

  45. Shen, L., & Li, C. (2010). Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In Geoinformatics 2010 18th International Conference (pp. 1–4). IEEE. https://doi.org/10.1109/GEOINFORMATICS.2010.5567762

  46. Wu, W., Al-Shafie, W., Mhaimeed, A., Ziadat, F., Nangia, V., & Payne, W. (2014). Soil salinity mapping by multiscale remote sensing in Mesopotamia Iraq. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 4442–4452. https://doi.org/10.1109/JSTARS.2014.2360411

    Article  Google Scholar 

  47. Scudiero, E., Corwin, D. L., Anderson, R. G., Yemoto, K., Clary, W., Wang, Z., & Skaggs, T. H. (2017). Remote sensing is a viable tool for mapping soil salinity in agricultural lands. California Agriculture, 71(4), 231–238. https://doi.org/10.3733/ca.2017a0009

    Article  Google Scholar 

  48. Alhammadi, M. S., & Glenn, E. P. (2008). Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI. International Journal of Remote Sensing, 29, 1745–1765. https://doi.org/10.1080/01431160701395195

    Article  Google Scholar 

  49. Douaoui, A. E. K., Nicolas, H., & Walter, C. (2006). Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134, 217–230. https://doi.org/10.1016/j.geoderma.2005.10.009

    Article  Google Scholar 

  50. Abbas, A., & Khan, S. (2007). Using remote sensing techniques for appraisal of irrigated soil salinity. In MODSIM 2007: International Congress on Modeling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability (pp. 2632–2638).

  51. Food and Agriculture Organization of the United Nations. (1988). The salinity and alkalinity status of arid and semi-arid lands. FAO.

    Google Scholar 

  52. Dormann, C. F., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  53. Chen, L., Wang, Y., Ren, C., Zhang, B., & Wang, Z. (2019). Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging. Forest ecology and management, 447, 12–25. https://doi.org/10.3390/ijgi8110511

    Article  Google Scholar 

  54. An, D., Zhao, G., Chang, C., Wang, Z., Li, P., Zhang, T., & Jia, J. (2016). Hyperspectral field estimation and remote sensing inversion of salt content in coastal saline soils of the Yellow River Delta. International Journal of Remote Sensing, 37(2), 455–470. https://doi.org/10.1080/01431161.2015.1129562

    Article  Google Scholar 

  55. Rahmati, M., & Hamzehpour, N. (2016). Quantitative remote sensing of soil electrical conductivity using ETM+ and ground measured data. International Journal of Remote Sensing, 38(1), 123–140. https://doi.org/10.1080/01431161.2016.1259681

    Article  Google Scholar 

  56. Hihi, S., Rabah, Z. B., Bouaziz, M., Chtourou, M. Y., & Bouaziz, S. (2019). Prediction of soil salinity using remote sensing tools and linear regression model. Advances in Remote Sensing, 8(3), 77–88. https://doi.org/10.4236/ars.2019.83005

    Article  Google Scholar 

  57. Alqasemi, A. S., Ibrahim, M., Al-Quraishi, A. M. F., Saibi, H., Al-Fugara, A., & Kaplan, G. (2021). Detection and modeling of soil salinity variations in arid lands using remote sensing data. Open Geosciences, 13, 443–453. https://doi.org/10.1515/geo-2020-0244

    Article  Google Scholar 

  58. Al-Ali, Z. M., Bannari, A., El-Battay, R. H., Shahid, S. A., & Hameid, N. A. (2021). Validation and comparison of physical models for soil salinity mapping over an arid landscape using spectra reflectance measurements and Landsat-OLI data. Remote Sensing, 13(3), 494. https://doi.org/10.3390/rs13030494

    Article  Google Scholar 

  59. Grömping, U. (2009). Variable importance assessment in regression: Linear regression versus random forest. The American Statistician, 63, 308–319. https://doi.org/10.1198/tast.2009.08199

    Article  Google Scholar 

  60. Farahmand, N., Sadeghi, V., & Farahmand, S. (2020). Estimating soil salinity in the dried lake bed of Urmia Lake using optical Sentinel-2b images and multivariate linear regression models. Journal of the Indian Society of Remote Sensing, 48, 675–687. https://doi.org/10.1007/s12524-019-01100-8

    Article  Google Scholar 

  61. Goossens, R., & Van Ranst, E. (1998). The use of remote sensing to map gypsiferous soils in the Ismailia Province (Egypt). Geoderma, 87(1–2), 47–56.

    Article  Google Scholar 

  62. Metternicht, G. I., & Zinck, J. A. (2003). Remote sensing of soil salinity: Potentials and constraints. Remote Sensing of the Environment, 85(1), 1–20. https://doi.org/10.1016/S0034-4257(02)00188-8

    Article  Google Scholar 

  63. Alavipanah, S. K., & Goossens, R. (2001). Relationship between the Landsat TM, MSS data and soil salinity. Journal of agricultural science and technology (JAST), 3, 101–111.

    Google Scholar 

  64. Meti, S., Hanumesh, P., Lakshmi, D., Nagaraja, M. S., & Shreepad, V. (2019). Sentinel 2 and Landsat-8 bands sensitivity analysis for mapping of alkaline soil in northern dry zone of Karnataka India. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 42, 307–313 2019 ISPRS-GEOGLAM-ISRS Joint International workshop on “Earth Observations for Agricultural Monitoring.”

    Article  Google Scholar 

  65. Elmahdy, S. I., & Mohamed, M. M. (2012). Topographic attributes control groundwater flow and groundwater salinity of Al Ain UAE: A prediction method using remote sensing and GIS ISSN 2224–3216 (Paper) ISSN 2225–0948 (Online). Journal of Environment and Earth Science, 2, 1–13.

    Google Scholar 

  66. Csillag, F., Pásztor, L., & Biehl, L. (1993). Spectral band selection for the characterization of salinity status of soils. Remote Sensing of Environment, 43, 231–242. https://doi.org/10.1016/0034-4257(93)90068-9

    Article  Google Scholar 

  67. Gutierrez, M., & Johnson, E. (2010). Temporal variations of natural soil salinity in an arid environment using satellite images. Journal of South American Earth Sciences, 30, 46–57. https://doi.org/10.1016/j.jsames.2010.07.005

    Article  Google Scholar 

  68. Moore, D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modeling: Review of hydrological geomorphological and biological applications. Hydrological Processes, 5, 3–30.

    Article  Google Scholar 

  69. Loi, D. T., Chou, T. Y., & Fang, Y. M., (2017). Integration of GIS and remote sensing for evaluating forest canopy density index in Thai Nguyen Province Vietnam. International Journal of Environmental Science and Development, 8(8), 539–542. https://doi.org/10.18178/ijesd.2017.8.8.1012

  70. Nematolahi, M. J., Alavipanah, S. K., Zehtabian, G. R., Jafari, M., & Janfaza Matinfar, E. (2012). Assessment of ASTER data for soils investigation using field data and GIS in Damghan Playa. Desert, 17, 241–248. https://doi.org/10.22059/JDESERT.2013.35188

  71. Kawabata, D., Okada, A., & Takemura, K. (2000). Identification of active tectonic base systems for civil consultants. Geoinfomatics (Japan Society of Geoinfomatics), 11, 183–188 (in Japanese with English abstract).

    Google Scholar 

  72. Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698

    Article  Google Scholar 

  73. US Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils (p. 160). Washington: US Department of Agriculture Handbook No. 60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Elham Shahrayini: methodology, investigation, data curation, validation, software, writing-reviewing, and editing. Ali.Akbar Noroozi: review, editing, and supervision.

Corresponding author

Correspondence to Elham Shahrayini.

Ethics declarations

Conflict of Interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrayini, E., Noroozi, A.A. Modeling and Mapping of Soil Salinity and Alkalinity Using Remote Sensing Data and Topographic Factors: a Case Study in Iran. Environ Model Assess 27, 901–913 (2022). https://doi.org/10.1007/s10666-022-09823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-022-09823-8

Keywords

Navigation