Skip to main content
Log in

Modelling of a Capillary Rise Height of Biochar by Modified Lucas–Washburn Equation

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Lucas–Washburn equation is a fundamental expression which is used to describe capillary rise in porous materials according to average pore radius, liquid viscosity, surface tension, contact angle and time. However, a traditional equation is overestimating a real capillary rise height of liquid in the material, since it models pores as straight and circular capillaries, though in reality porous materials, such as biochar, have tortuous capillaries with different aperture forms. It is also known that cellulosic materials are characterised by their swelling capacity, which also can affect the process of capillary rise. Therefore, a modified model including a parameter describing the pores’ form and swelling parameters (volumetric swelling, energy loss coefficient and radius of swelled capillary) was developed. Experiments of water capillary rise in the biofilter tubes were conducted: the biochar made from different primary feedstocks, size of particles and modifications with steam of the biomedia. It was shown that the model is suitable for the prediction of short time (until 5 h) water capillary rise process in biochar due to low relative maximum error. Both experimental and modelling results showed that higher biochar porosity, average capillary radius, volumetric swelling and wettability govern higher velocity of capillary rise. Meanwhile, liquids with higher surface tension and dynamic viscosity lower the capillary rise speed in the biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material

Due to the nature of this research, participants of this study did not agree for their data to be shared publicly, so supporting data is not available.

References

  1. Masoodi, R., & Pillai, K. M. (2010). Darcy’s law-based model for wicking in paper-like swelling porous media. AIChE Journal, 56(9), 2257–2267. https://doi.org/10.1002/aic.12163

    Article  CAS  Google Scholar 

  2. Cai, J., Hu, X., Standnes, D. C., & You, L. (2012). An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, 228–233.

    Article  CAS  Google Scholar 

  3. Washburn, E. W. (1921). The dynamics of capillary flow. Physics Review, 17(3), 273–283.

    Article  Google Scholar 

  4. Cai, J., Yu, B., Zou, M., & Luo, L. (2010). Fractal characterization of spontaneous co-current imbibition in porous media. Energy & Fuels, 24, 1860–1867.

    Article  CAS  Google Scholar 

  5. Cai, J., Perfect, E., Cheng, C. -L., & Hu, X. (2014). Generalized modeling of spontaneous imbibition based on Hagen-Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir, 30(18), 5142–5151.

    Article  CAS  Google Scholar 

  6. Siddique, J. I., & Kara, A. (2016). Capillary rise of magnetohydrodynamics liquid into deformable porous material. Journal of Applied Fluid Mechanics, 9(6), 2837–2843.

    Article  Google Scholar 

  7. Masoodi, R., & Pillai, K. M. (2013). Wicking in porous materials (p. 2). Traditional and modern modeling approaches: CRC Press.

    Google Scholar 

  8. Ima, C. S., & Mann, D. D. (2011). Hygroscopic expansion of biofilter media consisting of woodchips. Australian Journal of Agricultural Engineering, 2(1), 5–7.

    Google Scholar 

  9. Dorado, A. D., Lafuente, F. J., Gabriel, D., & Gamisans, X. (2010). A comparative study based on physical charactersitics of suitable packing materials in biofiltration. Environmental Technology, 31(2), 193–204.

    Article  CAS  Google Scholar 

  10. Mochado, D. R., Hasson, D., & Semiat, R. (1999). Effect of solvent properties on permeate flow through nanofiltration membranes. Part I: Investigation of parameters affecting solvent flux. Journal of Membrane Science, 163, 93–102.

    Article  Google Scholar 

  11. Fu, Z., Guo, Z., Yuan, Z., & Wang, Z. (2007). Swelling and shrinkage behavior of raw and processed coals during pyrolysis. Fuel, 86, 418–425.

    Article  CAS  Google Scholar 

  12. Xie, K. C. (2015). Coal swelling. In: Structure and Reactivity of Coal: A Survey of Selected Chinese Coals, 305–335.

  13. Lucas, R. (1918). Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten. Kolloid-Z, 23, 15–22.

    Article  CAS  Google Scholar 

  14. Tsunawaza, Y., Yokoyama, T., & Nishiyama, N. (2016). An experimental study on the rate and mechanism of capillary rise in sandstone. Progress in Earth and Planetary Science, 3(8), 1–10.

    Google Scholar 

  15. Shi, S., & Gardner, D. J. (2000). A new model to determine contact angles on swelling polymer particles by the column wicking method. Journal of Adhesion Science and Technology, 14(2), 301–314.

    Article  CAS  Google Scholar 

  16. Markl, D., Yassin, S., Wilson, D. I., Goodwin, D. J., Anderson, A., & Zeitler, J. A. (2017). Mathematical modelling of liquid transport in swelling pharmaceutical immediate release tablets. International Journal of Pharmaceutics, 526, 1–10.

    Article  CAS  Google Scholar 

  17. Ha, J., Kim, J., Jung, Y., Yun, G., Kim, D. -N., Kim, H. -Y. (2018). Poro-elasto-capillary wicking of cellulose sponges. Science Advances, 4(3). https://doi.org/10.1016/B978-012369522-2/50012-9

  18. Komkiene, J., & Baltrenaite, E. (2015). Biochar as adsorbent for removal of heavy metal ions [Cadmium(II), Copper(II), Lea(II), Zinc(II)] from aqueous phase. International Journal of Environmental Science and Technology, 13, 471–482. https://doi.org/10.1007/s13762-015-0873-3

    Article  CAS  Google Scholar 

  19. Katyal, A., & Morisson, R. D. (2007). Forensic applications of contaminant transport models in the subsurface. In: Introduction to Environmental Forensics, Second Edition 513–575.

  20. Peng, J., & Wan, A. (1998). Effect of ionic strength on Henry’s constants of volatile organic compound. Chemosphere, 36(13), 2731–2741.

    Article  CAS  Google Scholar 

  21. Baltrėnas, P., Baltrėnaitė, E., & Spudulis, E. (2015). Biochar from pine and birch morphology and pore structure change by treatment in biofilter. Water, Air and Soil Pollution, 226(3), 1–14.

    Article  Google Scholar 

  22. Liu, Q., Yasufuku, N., Miao, J., & Ren, J. (2014). An approach for quick estimation of maximum height of capillary rise. Soils and Foundations, 54(6), 1241–1245.

    Article  Google Scholar 

  23. Shang, J., Flury, M., Harsh, J. B., & Zollars, R. L. (2008). Comparison of different methods to measure contact angles of soil colloids. Journal of Colloid and Interface Science, 328(2), 299–307.

    Article  CAS  Google Scholar 

  24. Jeffery, S., Meinders, M. B. J., Stoof, C. R., Bezemer, T. M., van de Voorde, T. F. J., Mommer, L., & van Groenigen, J. W. (2015). Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma, 251–252, 47–54.

    Article  Google Scholar 

  25. Giffin, S., Littke, R., Klaver, J., & Urai, J. L. (2013). Application of BIB-SEM technology to characterize macropore morphology in coal. International Journal of Coal Geology, 114, 85–95.

    Article  CAS  Google Scholar 

  26. Sienkiewicz, A., Krasucka, P., Charmas, B., Stefaniak, W., & Goworek, J. (2017). Swelling effects in cross-linked polymers by thermogravimetry. Journal of Thermal Analysis and Calorimetry, 130, 85–93.

    Article  CAS  Google Scholar 

  27. Okechukwu, I. K. (2019). Determination of contact angle measurement of sub-bituminous and bituminous coal particles through capillary rise method using washburn equation for surface free energy and interfacial energy. International Journal of Advances Engineering and Technology, 3(2), 58–62.

    Google Scholar 

  28. Vinš, V., Hruby, J., Hykl, J., Blaha, J., & Šmid, B. (2013). Design of an experimental apparatus for measurement of the surface tension of metastable fluids. EPJ Web of Conferences, 45, 5.

    Article  Google Scholar 

  29. A & D 2005. GX-13 Instruction Manual. Retrieved from https://www.aandd.jp/products/manual/manual_balances.html

  30. Wangler, J., & Kohlus, R. (2017). Dynamics of capillary wetting of biopolymer powders. Chemical Engineering Technology, 40(9), 1552–1560.

    Article  CAS  Google Scholar 

  31. Nagy, E., & Deak, A. J. (2013). Investigation of water capillary rise in soil columns made from clay mineral mixtures pretreated with cationic surfactants. Communications in Soil Science and Plant Analysis, 44(1–4), 749–757.

    Article  CAS  Google Scholar 

  32. Yang, W., Shang, J., Baoguo, L., & Flury, M. (2019). Surface and colloid properties of biochar and implications for transoprt in porous media. Critical Reviews in Environmental Science and Technology, 50(23), 2484–2522. https://doi.org/10.1080/10643389.2019.1699381

    Article  CAS  Google Scholar 

  33. Lou, K., Rajapaksha, A. U., Ok, Y. S., & Chang, S. X. (2016). Pyrolysis temperature and steam activation effects on sorption of phosfate on pine sawdust biochars in aqueous solutions. Chemical Speciation and Bioavailability, 28(1–4), 42–50. https://doi.org/10.1080/09542299.2016.1165080

    Article  CAS  Google Scholar 

  34. Li, K. W., & Horne, R. N. (2004). An analytical scaling method for spontaneous imbibition in gas-water-rock systems. SPE Journal, 9, 322–329.

    Article  CAS  Google Scholar 

  35. Huber, P., Gruner, S., Schafer, C., Knorr, K., & Kityk, A. V. (2007). Rheology of liquids in nanopores: A study on the capillary rise of water, n-Hexadecane and n-Tetracosane in mesoporous silica. The European Physical Journal Special Topics, 141, 101–105.

    Article  Google Scholar 

  36. Pezron, I., Bourgain, G., & Quere, D. (1995). Imbibition of a fabric. Journal of Colloid and Interface Science, 173, 319–327.

    Article  CAS  Google Scholar 

  37. Fries, N., & Dreyer, M. (2008). An analytical solution of capillary rise restrained by gravity. Colloid and Interface Science, 320, 259–263.

    Article  CAS  Google Scholar 

  38. Barry, D. A., Parlange, J. Y., Sander, M., & Sivaplan, M. (1993). A class of exact-solutions for Richards equation. Journal of Hydrology, 142, 29–46.

    Article  Google Scholar 

  39. Zeng, J., Lin, L., Tang, Y., Sun, Y., & Yuan, W. (2017). Fabrication and capillary characterization of micro-grooved wicks with reetrant cavity array. International Journal of Heat and Mass Transfer, 104, 918–929.

    Article  Google Scholar 

  40. Li, Y., Zhang, C., Chen, C., Chen, H. (2018). Calculation of capillary rise of soils by SWCC model. Advances in Civil Engineering, 10. https://doi.org/10.1155/2018/5190354

  41. Jaine, J. E., & Mucalo, M. R. (2015). Measurements of the wettability of catalyst support materials using the Washburn capillary rise technique. Powder Technology, 276, 123–128.

    Article  CAS  Google Scholar 

  42. Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., Driver, L. E., Panzacchi, P., Zygourakis, K., & Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176–185.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors have contributed equally to the work.

Corresponding author

Correspondence to Luiza Usevičiūtė.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usevičiūtė, L., Baltrėnaitė-Gedienė, E. Modelling of a Capillary Rise Height of Biochar by Modified Lucas–Washburn Equation. Environ Model Assess 27, 29–43 (2022). https://doi.org/10.1007/s10666-021-09782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09782-6

Keywords

Navigation