Multidimensional Approaches to Calculation of Design Floods at Confluences—PROIL Model and Copulas

Abstract

In confluence areas, where river flow slowdowns can be substantial, the selection of design flows for the purpose of designing a flood control system directly depends on flood waves at the mainstem and its tributaries. The aim of this paper is twofold: to elaborate a procedure that will define the flood exceedance probability in the analyzed area within a multidimensional probability space and to develop a methodology for defining flood coincidence in the mainstem reach with its main tributaries and thus determine design flows in order to design the flood control system in the confluence area. Mathematical models are based on (1) two-dimensional probability distribution (PROIL model) and (2) the copula function (Archimedean class of copulas), and fitted to a practical application in a two-dimensional probability distribution space. In case of random variables, simultaneous quantitative characteristics of flood wave (water flow) hydrographs for the mainstem and a tributary are considered. The paper discusses the specific reach of the Danube, from the Hungarian-Serbian border to the city of Smederevo, which encompasses three significant tributaries—the Drava, the Tisa, and the Sava.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Availability of Data and Material

Data and materials may be available on the request.

References

  1. 1.

    Bender, J., Wahl, T., Muller, A., & Jensen, J. (2016). A multivariate design framework for river confluences. Hydrological Sciences Journal, 61(3), 471–482.

    Article  Google Scholar 

  2. 2.

    Shiau, J. T. (2006). Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20, 795–815. https://doi.org/10.1007/s11269-005-9008-9.

    Article  Google Scholar 

  3. 3.

    Wang, C. (2007). A joint probability approach for the confluence flood frequency analysis, Retrospective Theses and Dissertations, 14865. https://lib.dr.iastate.edu/rtd/14865.

  4. 4.

    Ashkar, F., & Aucoin, F. (2011). A broader look at bivariate distributions applicable in hydrology. Journal of Hydrology, 405(3–4), 451–461.

    Article  Google Scholar 

  5. 5.

    Linsley, K. R., Kohler, A. M., & Paulhus, L. H. J. (1975). Hydrology for Engineers. USA: McGrow - Hill Book Company Inc.

    Google Scholar 

  6. 6.

    Marshall, A. W., & Olkin, I. (1988). Families of multivariate distributions. Journal of American Statistical Association, 83(403), 834–841.

    Article  Google Scholar 

  7. 7.

    Chebana, F., & Ouarda, T. B. M. J. (2011). Multivariate quantiles in hydrological frequency analysis. Envirometrics, 22(1), 63–78.

    Article  Google Scholar 

  8. 8.

    Krstanovic, P.F., & Singh, V.P. (1987). A multivariate stochastic flood analysis using entropy. In Hydrologic frequency modeling (pp. 515-539) . Springer, Dordrecht.

  9. 9.

    Yue, S., Ouarda, T. B. M. J., & Bobe’e, B., Legendre, P., Bruneau, P. . (1999). The Gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226(1–2), 88–100.

    Article  Google Scholar 

  10. 10.

    Prohaska, S., & Ilic, A. (2010). Coincidence of Flood Flow of the Danube River and Its Tributaries. In M. Brilly (Ed.), Hydrological Processes of the Danube River Basin - Perspectives from the Danubian Countries (pp. 175-226). Springer, The Netherlands. https://doi.org/10.1007/978-90-481-3423-6_6.

  11. 11.

    Prohaska, S., Isailović, D., Srna, P., & Marčetić, I. (1999). The Danube and its Basin – A Hydrological Monograph Follow-up volume IV, Coincidence of Flood Flow of the Danube River and its Tributaries. In Regional Co-operation of the Danube Countries in the Frame of the International Hydrological Programme of UNESCO (pp. 1-187). Water Research Institute Bratislava, Slovakia.

  12. 12.

    Sackl, B., & Bergmann, H. (1987). A bivariate flood model and its application. Hydrologic frequency modeling. In V.P. Singh (Ed.), Dordrecht, the Netherlands: Dreidel, 571–582.

  13. 13.

    Yue, S. (2000). The bivariate lognormal distribution to model a multivariate flood episode. Hydrological Processes, 14(14), 2575–2588.

    Article  Google Scholar 

  14. 14.

    Yue, S. (2001). A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrological Processes, 15(6), 1033–1045.

    Article  Google Scholar 

  15. 15.

    Kotz, S., Balakrishnan, N., & Johnson, N. L. (2000). Continuous multivariate distributions. New York: John Wiley.

    Google Scholar 

  16. 16.

    Nelsen, R. B. (2006). An introduction to copulas. New York: Springer.

    Google Scholar 

  17. 17.

    Kao, S. C., & Govindaraju, R. S. (2010). A copula-based joint deficit index for droughts. Journal of Hydrology, 380, 121–134. https://doi.org/10.1016/j.jhydrol.2009.10.029.

    Article  Google Scholar 

  18. 18.

    Lee, T., Modarres, R., & Ouarda, T. (2013). Data-based analysis of bivariate copula tail dependence for drought duration and severity. Hydrological Processes, 27, 1454–1463. https://doi.org/10.1002/hyp.9233.

    Article  Google Scholar 

  19. 19.

    Reddy, M. J., & Ganguli, P. (2012a). Application of copulas for derivation of drought severity-duration frequency curves. Hydrological Processes, 26, 1672–1685. https://doi.org/10.1002/hyp.8287.

    Article  Google Scholar 

  20. 20.

    Wong, G., Van Lanen, H. A. J., & Torfs, P. (2013). Probabilistic analysis of hydrological drought characteristics using meteorological drought. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 58, 253–270. https://doi.org/10.1080/02626667.2012.753147.

    Article  Google Scholar 

  21. 21.

    Balistrocchi, M., & Bacchi, B. (2011). Modelling the statistical dependence of rainfall event variables through copula functions. Hydrology and Earth System Sciences, 15, 1959–1977. https://doi.org/10.5194/hess-15-1959-2011.

    Article  Google Scholar 

  22. 22.

    De Michele, C., & Salvadori, G. (2003). A Generalized intensity-duration model of storm rainfall exploiting 2-copulas. Journal of Geophysical Research: Atmospheres, 108(D2), 4067. https://doi.org/10.1029/2002JD002534.

    Article  Google Scholar 

  23. 23.

    Ghosh, S. (2010). Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighboring meteorological subdivisions using copula. Hydrological Processes, 24, 35583567. https://doi.org/10.1002/hyp.7785.

    Article  Google Scholar 

  24. 24.

    Salvadori, G., & De Michele, C. (2007). On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering, 12(4), 369–380. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(369).

    Article  Google Scholar 

  25. 25.

    Singh, V. P., & Zhang, L. (2007). IDF curves using the Frank Archimedean copula. Journal of Hydrologic Engineering, 12(651–662), 2019. https://doi.org/10.1061/(asce)1084-0699(2007)12:6(651).AccessedinJune.

    Article  Google Scholar 

  26. 26.

    Zhang, L., & Singh, V. P. (2007). Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology, 332, 93–109. https://doi.org/10.1016/j.jhydrol.2006.06.033.

    Article  Google Scholar 

  27. 27.

    Bardossy A. (2006). Copula-based geostatistical models for groundwater quality parameters. Water Resources Research, 42. https://doi.org/10.1029/2005wr004754.

  28. 28.

    De Michele, C., Salvadori, G., Canossi, M., Petaccia, A., & Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10, 50–57. https://doi.org/10.1061/(asce)1084-0699(2005)10:1(50).

    Article  Google Scholar 

  29. 29.

    Bezak, N., Mikoš, M., & Šraj, M. (2014). Trivariate frequency analyses of peak discharge, hydrograph volume and suspended sediment concentration data using copulas. Water Resources Management, 28, 2195–2212. https://doi.org/10.1007/s11269-014-0606-2.

    Article  Google Scholar 

  30. 30.

    Favre, A. C., El Adlouni, S., Perreault, L., Thiemonge, N., & Bobee, B. (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40, W01101. https://doi.org/10.1029/2003WR002456.

    Article  Google Scholar 

  31. 31.

    Genest, C., & Favre, A. C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347–368. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347).

    Article  Google Scholar 

  32. 32.

    Grimaldi, S., & Serinaldi, F. (2006). Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29: 1155-1167. https://doi.org/10.1016/j.advwatres.2005.09.005.

  33. 33.

    Karmakar, S., & Simonovic, S. P. (2009). Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. Journal of Flood Risk Management, 2, 32–44. https://doi.org/10.1111/j.1753-318X.2009.01020.x.

    Article  Google Scholar 

  34. 34.

    Renard, B., & Lang, M. (2007). Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Advances in Water Resources, 30, 897–912. https://doi.org/10.1016/j.advwatres.2006.08.001.

    Article  Google Scholar 

  35. 35.

    Shiau, J. T., Wang, H. Y., & Tsai, C. T. (2006). Bivariate frequency analysis of floods using copulas. Journal of the American Water Resources Association (JAWRA), 42(6), 1549–1564.

    Article  Google Scholar 

  36. 36.

    Zhang, L., & Singh, V. P. (2006). Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11, 150–164. https://doi.org/10.1061/(asce)1084-0699(2006)11:2(150).

    Article  Google Scholar 

  37. 37.

    Chen, L., Singh, V. P., Guo, S. L., Hao, Z. C., & Li, T. Y. (2012). Flood coincidence risk analysis using multivariate copula functions. Journal of Hydrologic Engineering, 17, 742–755. https://doi.org/10.1061/(asce)he.1943-5584.0000504.

    Article  Google Scholar 

  38. 38.

    Huang, K., Chen, L., Zhou, J., Zhang, J., & Singh, V. P. (2018). Flood hydrograph coincidence analysis for mainstem and its tributaries. Journal of Hydrology, 565, 341–353. https://doi.org/10.1016/j.hydrolo.2018.08.007.

    Article  Google Scholar 

  39. 39.

    Jhong, B. C., & Tung, C. P. (2018). Evaluating future joint probability of precipitation extremes with a copula-based assessing approach in climate change. Water Resources Management, 32(13), 4253–4274. https://doi.org/10.1007/s11269-018-2045-y.

    Article  Google Scholar 

  40. 40.

    Jhong, B. C., Huang, J., & Tung, C. P. (2019). Spatial assessment of climate risk for investigating climate adaptation strategies by evaluating spatial-temporal variability of extreme precipitation. Water Resources Management. https://doi.org/10.1007/s11269-019-02306-8.

    Article  Google Scholar 

  41. 41.

    Salvadori, G., DeMichele, C., Kottegoda, N.T., & Rosso, R. (2007). Extremes in nature: an approach using copulas, water science and technology library series.Vol.56, 1st ed., Springer, Dordrecht, The Netherlands.

  42. 42.

    Abramowitz, M., & Stegun, A. I. (1972). Handbook of mathematical functions with formulas, graphs and mathematical tables. New York: Dover Publications, INC.

    Google Scholar 

  43. 43.

    Schmidt, T. (2006). Coping with Copulas. Forthcoming in Risk Books, Copulas- From Theory to Applications in Finance. Department of mathematics, University of Leipzig.

  44. 44.

    Dupuis, D. J. (2007). Using copulas in hydrology: benefits, cautions and issues. Journal of Hydrologic Engineering, 12(4), 381–393. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(381).

    Article  Google Scholar 

  45. 45.

    Reddy, M. J., & Ganguli, P. (2012b). bivariate flood frequency analysis of Upper Godavari River flows using Archimedean copulas. Water Resources Management, 26(14), 3995–4018. https://doi.org/10.1007/s11269-012-0124-z.

    Article  Google Scholar 

  46. 46.

    Genest, C., Remillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics & Economics, 44, 199-213.

  47. 47.

    Markiewicz, I., Strupczewski, W. G., & Kochanek, K. (2010). On accuracy of upper quantiles estimation. Hydrology and Earth System Sciences, 14, 2167–2175. www.hydrol-earth-syst-sci.net/14/2167/2010/. https://doi.org/10.5194/hess-14-2167-2010.

Download references

Acknowledgments

The authors express their gratitude to the Ministry of Education, Science and Technological Development of the Republic of Serbia for its financial assistance and support.

Funding

The presented analyses and results are part of the outcomes of the research project “Assessment of Climate Change Impact on Serbia’s Water Resources” (TR-37005), 2011–2019, of the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Affiliations

Authors

Contributions

Aleksandra Ilić designed the initial research, conducted research and wrote initial manuscript except Introduction chapter. Stevan Prohaska checked the statistical analysis and results. Dragan Radivojević presented the results graphically. Slavisa Trajković contributed in terms of improving the initial research, writing Introduction chapter, improving the written language of the manuscript and checking the overall logical flow of the manuscript. In addition, the authors pointed out necessary comments towards improving the quality of the final manuscript.

Corresponding author

Correspondence to Aleksandra Ilić.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Marginal Probabilities Q 1%

See Table 5, 6 , and 7.

Table 5 Marginal probabilities Q1% for node 1
Table 6 Marginal probabilities Q1% for node 2
Table 7 Marginal probabilities Q1% for node 3

Appendix 2. Copula Properties

See Table 8.

Table 8 Correlation coefficients, parameter of copulas, and goodness of fit p value

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ilić, A., Prohaska, S., Radivojević, D. et al. Multidimensional Approaches to Calculation of Design Floods at Confluences—PROIL Model and Copulas. Environ Model Assess (2021). https://doi.org/10.1007/s10666-021-09748-8

Download citation

Keywords

  • Confluence
  • PROIL model
  • Archimedean copulas
  • Design flood level
  • Flood control system