Skip to main content

An Oligopoly Game of CDR Strategy Deployment in a Steady-State Net-Zero Emission Climate Regime

Abstract

In this paper, we propose a simple oligopoly game model to represent the interactions between coalitions of countries in deploying carbon dioxide removal (CDR) strategies in a steady-state net-zero emission climate regime that could take place by the end of the twenty-first century. The emission quotas and CDR activities obtained in the solution of this steady-state model could then be used as a target for end-of-period conditions in a dynamic integrated assessment analysis studying the transition to 2100. More precisely, we analyze a steady-state situation where m coalitions exist and behave as m players in a game of supplying emission rights on an international emission trading system. The quotas supplied by a coalition must correspond to the amount of CO2 captured through CDR activities in the corresponding world region. We use an extension of the computable general equilibrium model GEMINI-E3 to calibrate the payoff functions and compute an equilibrium solution in the noncooperative game.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Actually, several world regions (for instance Canada, or the European Union through its European Green Deal) are aiming to reach carbon neutrality as early as 2050.

  2. 2.

    See the APS report [48].

  3. 3.

    We distinguish Qatar and other Gulf Cooperation Council (GCC) countries, as this study is part of a research project supported by the Qatar National Research Fund.

  4. 4.

    Male and female population aged from 20 to 64.

  5. 5.

    Emissions from energy combustion.

References

  1. 1.

    Allen, M.R., Frame, D.J., Huntingford, C., Jones, C.D., Lowe, J.A., Meinshausen, M., & Meinshausen, N. (2009). Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458, 1163–1166.

    CAS  Google Scholar 

  2. 2.

    Azar, C., Lindgren, K., Larson, E., & Möllersten, K. (2006). Carbon capture and storage from fossil fuels and biomass – costs and potential role in stabilizing the atmosphere. Climatic Change, 74, 47–79.

    CAS  Google Scholar 

  3. 3.

    Azar, C., Lindgren, K., Obersteiner, M., Riahi, K., van Vuuren, D.P., den Elzen, K.M., Möllersten, K., & Larson, E.D. (2010). The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Climatic Change, 100 (1), 195–202.

    CAS  Google Scholar 

  4. 4.

    Babonneau, F., Badran, A., Benlahrech, M., Haurie, A., Schenckery, M., & Vielle, M. (2020). Economic assessment of the possible role of CDR technologies in long-term climate strategies for GCC countries. IAEE 2020 Paris.

  5. 5.

    Babonneau, F., Bernard, A., Haurie, A., & Vielle, M. (2018). Meta-modeling to assess the possible future of Paris Agreement. Environmental Modeling & Assessment, 23(6), 611–626.

    Google Scholar 

  6. 6.

    Babonneau, F., Haurie, A., & Vielle, M. (2016). Assessment of balanced burden-sharing in the 2050 EU climate/energy roadmap: a metamodeling approach. Climatic Change, 134(4), 505–519.

    Google Scholar 

  7. 7.

    Babonneau, F., Haurie, A., & Vielle, M. (2016). A robust noncooperative meta-game for climate negotiation in europe. Advances in dynamic and evolutionary games, volume 14 of the series annals of the international society of dynamic games, 301–319.

  8. 8.

    Babonneau, F., Haurie, A., & Vielle, M. (2018). From COP21 pledges to a fair 2°C pathway. Economics of Energy & Environmental Policy, 7(2), 69–92.

    Google Scholar 

  9. 9.

    Babonneau, F., Haurie, A., & Vielle, M. (2018). Welfare implications of eu effort sharing decision and possible impact of a hard brexit. Energy Economics, 74, 470–489.

    Google Scholar 

  10. 10.

    Bahn, O., & Haurie, A. (2016). A cost-effectiveness differential game model for climate agreements. Dynamic Games and Applications, 6(1), 1–19.

    Google Scholar 

  11. 11.

    Bahn, O., & Haurie, A. (2019). A steady-state game of zero-emission climate regime. In Pineau, P.-O., Sigué, S., & Taboubi, S. (Eds.) Games in management sciences, volume essays in honor of Georges Zaccour of international series in operations research & management science (pp. 115–130): Springer.

  12. 12.

    Bartsch, U., & Müller, B. (2000). Fossil fuels in a changing climate – impacts of the kyoto protocol and developing country participation. Oxford Institute for Energy Studies.

  13. 13.

    Bernard, A., & Vielle, M. (2003). Measuring the welfare cost of climate change policies: a comparative assessment based on the computable general equilibrium model GEMINI-e3. Environmental Modeling and Assessment, 8(3), 199–217.

    Article  Google Scholar 

  14. 14.

    Bernard, A., & Vielle, M. (2008). GEMINI-E3, a general equilibrium model of international national interactions between economy, energy and the environment. Computational Management Science, 5(3), 173–206.

    Article  Google Scholar 

  15. 15.

    Chen, C., & Tavoni, M. (2013). Direct air capture of CO2 and climate stabilization: a model based assessment. Climatic Change, 118, 59–72.

    CAS  Article  Google Scholar 

  16. 16.

    Doelman, J.C., Stehfest, E., van Vuuren, D.P., Tabeau, A., Hof, A.F., Braakhekke, M.C., Gernaat, D.E., van den Berg, M., van Zeist, W.-J., Daioglou, V., van Meijl, H., & Lucas, P.L. (2020). Afforestation for climate change mitigation: potentials, risks and trade-offs. Global Change Biology.

  17. 17.

    EASAC. (2018). Negative emission technologies: what role in meeting Paris Agreement targets? Technical report, EASAC, Secretariat Deutsche Akademie der Naturforscher Leopoldina German National Academy of Sciences Jägerberg 1 D-06108 Halle (Saale).

  18. 18.

    Favero, A., Sohngen, B., Huang, Y., & Jin, Y. (2018). Global cost estimates of forest climate mitigation with albedo: a new integrative policy approach. Environmental Research Letters, 13(12), 125002.

    CAS  Article  Google Scholar 

  19. 19.

    Ferris, M.C., & Munson, T.S. (2000). Complementarity problems in GAMS and the PATH solver. Journal of Economic Dynamics and Control, 24, 165–188.

    Article  Google Scholar 

  20. 20.

    Fuss, S., Lamb, W.F., Callaghan, M.W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G.F., Rogelj, J., Smith, P., Vicente, J.L., Wilcox, J., del Mar Zamora Dominguez, M., & Minx, J.C. (2018). Negative emissions – part 2: costs, potentials and side effects. Environmental Research Letters, 13, 063002.

    Google Scholar 

  21. 21.

    Hallegatte, S., Rogelj, J., Allen, M., Clarke, L., Edenhofer, O., Field, C.B., Friedlingstein, P., van Kesteren, L., Knutti, R., Mach, K.J., Mastrandrea, M., Michel, A., Minx, J., Oppenheimer, M., Plattner, G.-K., Riahi, K., Schaeffer, M., Stocker, T.F., & van Vuuren, D.P. (2016). Mapping the climate change challenge. Nature Climate Change, 6(7), 663–668.

    Google Scholar 

  22. 22.

    Haurie, A., Babonneau, F., Edwards, N., Holden, P., Kanudia, A., Labriet, M., Leimbach, M., Pizzileo, B., & Vielle, M. (2014) In Bernard, L., & Semmler, W. (Eds.), Fairness in climate negotiations : a meta-game analysis based on community integrated assessment. Oxford: Oxford Handbook on the Macroeconomics of Global Warming. Oxford University Press.

  23. 23.

    Helm, C. (2003). International emissions trading with endogenous allowance choices. Journal of Public Economics, 87, 2737–2747.

    Google Scholar 

  24. 24.

    House, K.Z., Baclig, A.C., Ranjan, M., Nierop, E.A., Wilcoxx, J., & Herzog, H.J. (2011). Economic and energetic analysis of capturing CO2 from ambient air. PNAS Early Edition, 1–6.

  25. 25.

    IEA. Energy technology perspective 2015. Technical report, IEA (2015).

  26. 26.

    International Energy Agency. Potential for biomass and carbon dioxide capture and storage (2011).

  27. 27.

    International Energy Agency. World Energy Outlook 2019. (2019).

  28. 28.

    Kearns, J., Teletzke, G., Palmer, J., Thomann, H., Kheshgi, H., Chen, H., Paltsev, S., & Herzog, H. (2017). Developing a consistent database for regional geologic CO2 storage capacity worldwide. Energy Procedia, 114, 4697–4709.

    CAS  Google Scholar 

  29. 29.

    Keith, D.W., Holmes, G., Angelo, D. S. t., & Heidel, K. (2018). A process for capturing CO2 from the atmosphere. Joule, 2, 1573–1594.

    CAS  Google Scholar 

  30. 30.

    Knutti, R., Rogelj, J., Sedlacek, J., & Fischer, E.M. (2016). A scientific critique of the two-degree climate change target. Nature Geoscience, 9(1), 13–18.

    CAS  Google Scholar 

  31. 31.

    Kriegler, E., Edenhofer, O., Reuster, L., Luderer, G., & Klein, D. (2013). Is atmospheric carbon dioxyde removal a game changer for climate change mitigation? Climatic Change, 118, 45–57.

    CAS  Google Scholar 

  32. 32.

    Marcucci, A., Panos, V., & Kypreos, S. (2017). The road to achieving the long-term Paris targets: energy transition and the role of direct air capture. Climatic Change.

  33. 33.

    Mathesius, S., Hofmann, M., Caldeira, K., & Schellnhuber, H.-J. (2015). Long-term response of oceans to CO2 removal from the atmosphere. Nature Climate Change, 5(12), 1107–1113.

    CAS  Google Scholar 

  34. 34.

    Meadowcroft, J. (2013). Exploring negative territory carbon dioxide removal and climate policy initiatives. Climatic Change, 118(1), 137–149.

    Article  Google Scholar 

  35. 35.

    Minx, J.C., Lamb, W.F., Callaghan, M.W., Fuss, S., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna, T., Lenzi, D., Luderer, G., Nemet, G.F., Rogelj, J., Smith, P., Vicente, J.L.V., Wilcox, J., & del Mar Zamora Dominguez, M. (2018). Negative emissions—part 1: research landscape and synthesis. Environmental Research Letters, 13(6), 063001.

    Article  Google Scholar 

  36. 36.

    Muratori, M., Bauer, N., Rose, S.K., Wise, M., Daioglou, V., Cui, Y., Kato, E., Gidden, M., Strefler, J., Fujimori, S., Sands, R.D., van Vuuren, D.P., & Weyant, J. (2020). EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Climatic Change. https://doi.org/10.1007/s10584-020-02784-5.

  37. 37.

    Narayanan, B.G., Aguiar, A., & McDougall, R. (Eds.). (2015). Global trade, assistance and production: the GTAP 9 data base. West Lafayette: Center for Global Trade Analysis, Purdue University.

    Google Scholar 

  38. 38.

    Paltsev, S., Sokolov, A., Gao, X., & Haigh, M. (2018). Meeting the goals of the Paris agreement: temperature implications of the Shell Sky scenario. Technical Report 330, MIT Joint Program on the Science and Policy of Global Change.

  39. 39.

    Realmonte, G., Drouet, L., Gambhir, A., Glynn, J., Hawkes, A., Köberle, A.C., & Tavoni, M. (2020). An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature Communication, 3277.

  40. 40.

    Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Aleluia Da Silva, L., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J.C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., & Tavoni, M. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environmental Change, 42, 153–168.

    Google Scholar 

  41. 41.

    Ricci, O. , & Selosse. S. (2013). Global and regional potential for bioelectricity with carbon capture and storage. Energy Policy, 52, 689–698. Special Section: Transition Pathways to a Low Carbon Economy.

    CAS  Google Scholar 

  42. 42.

    Rogelj, J., Huppmann, D., Krey, V., Riahi, K., Clarke, L., Gidden, M., Nicholls, Z., & Meinshausen, M. (2019). A new scenario logic for the paris agreement long-term temperature goa. Nature, 573, 357–363.

    CAS  Google Scholar 

  43. 43.

    Rogelj, J., Shindell, D., Jianga, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., & Séférian, R. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty chapter Mitigation pathways compatible with 1.5°C in the context of sustainable development.

  44. 44.

    Selosse, S., & Ricci, O. (2014). Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model. Energy, 76, 967–975.

    Google Scholar 

  45. 45.

    Shell-Corp. (2016). A better life with a healthy planet: pathways to net-zero emissions. Technical report, Royal Dutch Shell.

  46. 46.

    Shell-Corp. (2018). Shell scenarios sky: Meeting the goals of the Paris Agreement. Technical report, Royal Dutch Shell.

  47. 47.

    Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E.A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N.H., Rice, C.W., Robledo Abad, C., Romanovskaya, A., Sperling, F., & Tubiello, F. (2014). Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, chapter agriculture, forestry and other land use (AFOLU). Cambridge: Cambridge University Press.

    Google Scholar 

  48. 48.

    The American Physical Society. (2011). Direct air capture of CO2 with chemicals: a technology assessment for the APS panel on public affairs.

  49. 49.

    Strefler, J., Bauer, N., Kriegler, E., Popp, A., Giannousakis, A., & Edenhofer, O. (2018). Between scylla and charybdis: delayed mitigation narrows the passage between large-scale CDR and high costs. Environmental Research Letters, 13, 044015.

    Google Scholar 

  50. 50.

    Tavoni, M., & Socolow, R. (2013). Modeling meets science and technology: an introduction to a special issue on negative emissions. Climatic Change, 118(1), 1–14.

    Google Scholar 

  51. 51.

    United Nations. (2017). World population prospects: the 2017 revision. Population Division, Department of Economic and Social Affairs.

  52. 52.

    Vinca, A., Rottoli, M., Marangoni, G., & Tavoni, M. (2018). The role of carbon capture and storage electricity in attaining 1.5 and 2°C. International Journal of Greenhouse Gas Control, 78, 148–159.

    Google Scholar 

Download references

Acknowledgments

We thank several researchers who kindly provided additional data from their original papers. This help is much appreciated; in particular, we thank Alice Favero who provided the marginal costs of forest mitigation published in [18] and Adriana Marcucci who gave the CO2 sequestered by DACCS in [32].

The sole responsibility for the content of this paper lies with the authors; the paper does not necessarily reflect the opinions of the European Commission.

Funding

Research supported by QNRF grant NPRP10-0212-17044 on Modeling and Assessing the Transition to Low Carbon/Smart Economy in Gulf Countries (M. Vielle, A. Haurie, and F. Babonneau), the Natural Sciences and Engineering Research Council of Canada under Discovery Grant RGPIN-2016-04214 (O. Bahn), and by the H2020 European Commission Project “PARIS REINFORCE” under grant agreement No. 820846 (M. Vielle). The first author also received support provided by FONDECYT 1190325 and by ANILLO ACT192094, Chile.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olivier Bahn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babonneau, F., Bahn, O., Haurie, A. et al. An Oligopoly Game of CDR Strategy Deployment in a Steady-State Net-Zero Emission Climate Regime. Environ Model Assess (2020). https://doi.org/10.1007/s10666-020-09734-6

Download citation

Keywords

  • Carbon dioxide removal
  • Climate change
  • Integrated assessment
  • Mitigation
  • Negative emissions
  • Steady-state game