Skip to main content
Log in

Robust Estimation Procedure for Autoregressive Models with Heterogeneity

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In environmental studies, regression analysis is frequently performed. The classical approach is the ordinary least squares method which consists in minimizing the sum of the squares of the residuals. However, this method relies on strong assumptions that are not always satisfied. In environmental data, the response variable often contains outliers and errors can be heteroscedastic. This can have significant effects on parameter estimation. To solve this problem, the weighted M-estimation was developed. It assumes a parametric function for the variance, and, estimates alternately and robustly, mean and variance parameters. However, this method is limited to the independent errors case, and is not applicable to time series data. Therefore, we introduce a new estimation procedure which adapts the weighted M-estimation to environmental time series data, while selecting optimal value for the tuning parameter present in the M-estimation. We compare the efficiency of our procedure on simulated data to other usual regression methods. Our estimation procedure outperforms the other methods providing estimates with lower biases and mean squared errors. Finally, we illustrate the proposed method using an air quality dataset from Beijing. This method has been implemented in the R package RlmDataDriven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bianco, A., Boente, G., & Di Rienzo, J. (2000). Some results for robust GM-based estimators in heteroscedastic regression models. Journal of Statistical Planning and Inference, 89(1-2), 215–242.

    Article  Google Scholar 

  2. Bickel, P.J. (1978). Using residuals robustly I: Tests for heteroscedasticity, nonlinearity. The Annals of Statistics, 6(2), 266–291.

    Article  Google Scholar 

  3. Box, G.E., & Hill, W.J. (1974). Correcting inhomogeneity of variance with power transformation weighting. Technometrics, 16(3), 385–389.

    Article  Google Scholar 

  4. Carroll, R.J., & Ruppert, D. (1982). Robust estimation in heteroscedastic linear models. The Annals of Statistics, 10(2), 429–441.

    Article  Google Scholar 

  5. Chan, C.K., & Yao, X. (2008). Air pollution in mega cities in China. Atmospheric Environment, 42(1), 1–42.

    Article  CAS  Google Scholar 

  6. Croux, C. (1994). Efficient high-breakdown M-estimators of scale. Statistics & Probability Letters, 19(5), 371–379.

    Article  Google Scholar 

  7. Davidian, M., & Carroll, R.J. (1987). Variance function estimation. Journal of the American Statistical Association, 82(400), 1079–1091.

    Article  Google Scholar 

  8. Evin, G., Kavetski, D., Thyer, M., & Kuczera, G. (2013). Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration. Water Resources Research, 49(7), 4518–4524.

    Article  Google Scholar 

  9. Giltinan, D.M. (1983). Bounded influence estimation in heteroscedastic linear modelS. Ph.D. thesis, Citeseer.

  10. Huber, P.J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. The Annals of Statistics, 1(5), 799–821.

    Article  Google Scholar 

  11. Huber, P.J. (1981). Robust statistics. New york, Chichester, Brisbane. Toronto, Singapore: John Wiley & Sons Ltd.

  12. Hyslop, N.P., Trzepla, K., & White, W.H. (2015). Assessing the suitability of historical pm2. 5 element measurements for trend analysis. Environmental Science & Technology, 49(15), 9247–9255.

    Article  CAS  Google Scholar 

  13. Jiang, Y., Wang, Y.G., Fu, L., & Wang, X. (2019). Robust estimation using modified huber’s functions with new tails. Technometrics, 61(1), 111–122.

    Article  Google Scholar 

  14. Jiang, Y., Wang, Y.G., Fu, L., & Wang, X. (2019). Robust estimation using modified huber’s functions with new tails. Technometrics, 61(1), 111–122.

    Article  Google Scholar 

  15. Knibbs, L.D., van Donkelaar, A., Martin, R.V., Bechle, M.J., Brauer, M., Cohen, D.D., Cowie, C.T., Dirgawati, M., Guo, Y., Hanigan, I.C., & et al. (2018). Satellite-based land-use regression for continental-scale long-term ambient pm2. 5 exposure assessment in australia. Environmental Science & Technology, 52 (21), 12445–12455.

    Article  CAS  Google Scholar 

  16. Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang, S., Huang, H., & Chen, S.X. (2015). Assessing Beijing’s PM2. 5 pollution: Severity, weather impact, APEC and winter heating. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2182), 20150257.

    Article  Google Scholar 

  17. McCullagh, P., & Nelder, J.A. (1989). Generalized Linear Models. vol. 37, CRC press.

  18. Newey, W.K., & West, K.D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708. http://www.jstor.org/stable/1913610.

    Article  Google Scholar 

  19. Pope, C.A. III, Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., & Thurston, G.D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132–1141.

    Article  CAS  Google Scholar 

  20. R Core Team. (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  21. Rousseeuw, P.J., & Leroy, A.M. (2005). Robust Regression and Outlier Detection. vol. 589, John wiley & sons.

  22. Stefanski, L.A., Carroll, R.J., & Ruppert, D. (1986). Optimally hounded score functions for generalized linear models with applications to logistic regression. Biometrika, 73(2), 413– 424.

    Google Scholar 

  23. Van Donkelaar, A., Martin, R.V., Spurr, R.J., & Burnett, R.T. (2015). High-resolution satellite-derived pm2. 5 from optimal estimation and geographically weighted regression over north america. Environmental Science & Technology, 49(17), 10482– 10491.

    Article  Google Scholar 

  24. Wang, N., Wang, Y.G., Hu, S., Hu, Z.H., Xu, J., Tang, H., & Jin, G. (2018). Robust regression with data-dependent regularization parameters and autoregressive temporal correlations. Environmental Modeling & Assessment, 23(6), 1–8.

    Article  Google Scholar 

  25. Wang, Y.G., Lin, X., Zhu, M., & Bai, Z. (2007). Robust estimation using the Huber function with a data-dependent tuning constant. Journal of Computational and Graphical Statistics, 16(2), 468–481.

    Article  Google Scholar 

  26. White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817–838. http://www.jstor.org/stable/1912934.

    Article  Google Scholar 

  27. Wu, E.M.Y., & Kuo, S.L. (2012). Air quality time series based garch model analyses of air quality information for a total quantity control district. Aerosol and Air Quality Research, 12(3), 331–343.

    Article  CAS  Google Scholar 

  28. Zhao, J., & Wang, J. (2009). Robust testing procedures in heteroscedastic linear models. Communications in Statistics–Simulation and Computation ® , 38(2), 244–256.

    Article  Google Scholar 

  29. Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L., Kiang, C.S., Zhang, Y., & Cass, G.R. (2005). Seasonal trends in PM2. 5 source contributions in Beijing, China. Atmospheric Environment, 39(22), 3967–3976.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was carried out during the visit of Aurelien Callens to the School of Mathematical Science, Queensland University of Technology, Brisbane, Australia.

Funding

This research was partially funded by the Australian Research Council project (DP160104292). Liya Fu’s research was supported by the National Natural Science Foundation of China (11871390), the Fundamental Research Funds for the Central Universities (No. xjj2017180), the Natural Science Basic Research Plan in Shaanxi Province of China (2018JQ1006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Callens.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callens, A., Wang, YG., Fu, L. et al. Robust Estimation Procedure for Autoregressive Models with Heterogeneity. Environ Model Assess 26, 313–323 (2021). https://doi.org/10.1007/s10666-020-09730-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-020-09730-w

Keywords

Navigation