Modelling Hazardous Reduction Burnings and Bushfire Emission in Air Quality Model and Their Impacts on Health in the Greater Metropolitan Region of Sydney


Modelling and forecasting of air pollution from bushfires or hazardous reduction burnings is important in providing information and allowing measures to be taken to reduce the exposure of people from harmful effect of air pollutants from fire events. In this work, the meteorological, chemical transport model and air quality models developed by the Commonwealth Scientific and Industrial Research Organisation of Australia are used in conjunction with the smoke emission model to simulate the formation and dispersion of particle aerosols (PM2.5) in the Greater Metropolitan Region of Sydney as the results of emission of different pollutant species from hazardous reduction burnings or from bushfires. The smoke emission model is based on a fire model describing two distinct fire behaviours: flaming and smothering. There are several schemes that can be used to estimate the emission factors of different emitted species from fire of various vegetation types. A comparison of these schemes is performed by comparing the air quality model output from air quality model with observation from monitoring stations in a case study, the May 2016 prescribed burning winter period, which caused elevated particle concentrations in the Sydney basin. The PM2.5 prediction over the Greater Metropolitan Region of Sydney from the forecasting modelling tool will then be used to calculate the population exposure and health impacts due to the May 2016 fire event as a case study. The three main health endpoints considered for health impacts are mortality, respiratory-related and cardiovascular hospitalisations. The results are comparable with other studies using non-modelling methods of determining the exposure and health impacts on this event.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    Burnett, R., Pope III, C., Ezzati, M., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397–403.

    Article  Google Scholar 

  2. 2.

    Boylan, J., & Russell, A. (2006). PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmospheric Environment, 40, 4946–4959.

    CAS  Article  Google Scholar 

  3. 3.

    Broome, R., Johnston, F., Horsley, J., & Morgan, G. (2016). A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. The Medical Journal of Australia, 205(9), 407–408.

    Article  Google Scholar 

  4. 4.

    Caiazzo, F., Ashok, A., Waitz, I., et al. (2013). Air pollution and early deaths in the United States. Part I: quantifying the impact of major sectors in 2005. Atmospheric Environment, 79, 198–208.

    CAS  Article  Google Scholar 

  5. 5.

    Center for International Earth Science Information Network (CIESIN), Columbia University. (2017). Global fire emissions indicators, country-level tabular data: 1997-2015. Palisades: NASA Socioeconomic Data and Applications Center (SEDAC).

    Google Scholar 

  6. 6.

    Chang, L., Duc, H., Scorgie, Y., et al. (2018). Performance evaluation of CCAM-CTM Regional Airshed Modelling for the New South Wales Greater Metropolitan Region. Atmosphere, 12(9), 486.

    CAS  Article  Google Scholar 

  7. 7.

    Churches, T., & Corbett, S. (1991). Asthma and air pollution in Sydney. NSW Public Health Bulletin, 8, 72–73.

    Article  Google Scholar 

  8. 8.

    Cooper, C., Mira, M., Danforth, M., et al. (1994). Acute exacerbations of asthma and bushfires. Lancet, 343, 1509.

    CAS  Article  Google Scholar 

  9. 9.

    Cope, M., Keywood, M., Emmerson, K., et al., (2014). Sydney particle study–stage II, CSIRO and Office of Environment and Heritage, Australia,

  10. 10.

    Cope, M., Lee, S., Meyer, M., et al., (2019). Smoke emission and transport modelling, research report 102, Department of Environment, Land, Water and Planning (DELWP),

  11. 11.

    Crippa, M., Janssens-Maenhout, G., Guizzardi, D., et al. (2019). Contribution and uncertainty of sectorial and regional emissions to regional and global PM2.5 health impacts. Atmospheric Chemistry and Physics, 19, 5165–5186.

    CAS  Article  Google Scholar 

  12. 12.

    Davidson, K., Hallberg, A., McCubbin, D., & Hubbell, B. (2007). Analysis of PM2.5 using the environmental benefits mapping and analysis program (BenMAP). Journal of Toxicology and Environmental Health - Part A, 70(3–4), 332–346.

    CAS  Article  Google Scholar 

  13. 13.

    Delfino, R. J., Brummel, S., Wu, J., et al. (2009). The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occupational and Environmental Medicine, 66.

  14. 14.

    Duc, H., Trieu, T., Scorgie, Y., et al. (2017). Air quality modelling of the Sydney region using CCAM-CTM. Air Quality and Climate Change, 51(1), 29–33.

    Google Scholar 

  15. 15.

    Duc, H., Chang, L., Azzi, M., & Jiang, N. (2018a). Smoke aerosols dispersion and transport from the 2013 New South Wales (Australia) bushfires. Environmental Monitoring and Assessment, 190(7), 428.

    CAS  Article  Google Scholar 

  16. 16.

    Duc, H., Chang, L., Trieu, T., et al. (2018b). Source contributions to ozone formation in the New South Wales Greater Metropolitan Region, Australia. Atmosphere, 9(11), 443.

    CAS  Article  Google Scholar 

  17. 17.

    Guérette, E., Paton-Walsh, C., Desservettaz, M., et al. (2018). Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified combustion efficiency. Atmospheric Chemistry and Physics, 18, 3717–3735.

    CAS  Article  Google Scholar 

  18. 18.

    Emery, C., Tai E., (2001). Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Prepared for the Texas Near Non-Attainment Areas through the Alamo Area Council of Governments, by ENVIRON International Corp, 2001.

  19. 19.

    Guo, Y., Gasparrini, A., Li, S., et al. (2018). Quantifying excess deaths related to heatwaves under climate change scenarios: a multicountry time series modelling study. PLoS Medicine.

  20. 20.

    Hill, T., Jorgenson, A., Ore, P., Balistreri, K., et al. (2019). Air quality and life expectancy in the United States: an analysis of the moderating effect of income inequality. SSM-Population Health.

  21. 21.

    Horsley, J., Broome, R., Johnston, F., Cope, M., & Morgan, G. (2018a). Health burden associated with fire smoke in Sydney, 2001-2013. The Medical Journal of Australia, 208(7), 309–310.

    Article  Google Scholar 

  22. 22.

    Horsley, J., Broome, R., Johnston, F., Morgan, G., (2018b). Methodology for hazard impact assessment of short term exposure to smoke associated with hazard reduction burns, a report on behalf of the Centre for air pollution, energy and health research (CAR) commissioned by the NSW Office of Environment and Heritage and NSW Health, June 2018.

  23. 23.

    Hutchison, J., Vargo, J., Milet, M., et al. (2018). The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: an observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Medicine, 15(7), e1002601.

    Article  Google Scholar 

  24. 24.

    Jaluladin, B., Smith, M., O’Toole, B., & Leeder, S. (2000). Acute effects of bushfires on peak expiratory flow rates in children with wheeze: a time series analysis. Australian and New Zealand Journal of Public Health, 24, 174–177.

    Article  Google Scholar 

  25. 25.

    Jiang, X., Wiedinmyer, C., & Carlton, A. (2012). Aerosols from fires: An examination of the effects on ozone photochemistry in the Western United States. Environmental Science & Technology, 46(21), 11878–11886.

    CAS  Article  Google Scholar 

  26. 26.

    Knowlton, K., Rosenthal, J., Hogrefe, C., et al. (2004). Assessing ozone-related health impacts under a changing climate. Environmental Health Perspectives, 15, 1557–1563.

    Article  Google Scholar 

  27. 27.

    Kochanski, A., Jenkins, M., Yedinak, K., et al. (2016). Toward an integrated system for fire, smoke and air quality simulations. International Journal of Wildland Fire, 25(5), 534–546.

    CAS  Article  Google Scholar 

  28. 28.

    Kochi, I., Donovan, G., Champ, P., & Loomis, J. (2010). The economic cost of adverse health effects from wildfire-smoke exposure: a review. International Journal of Wildland Fire, 2010(19), 803–817.

    Article  Google Scholar 

  29. 29.

    Lawson, S., Cope, M., Lee, S., Galbally, I., Ristovski, R., & Keywood, M. (2017). Biomass burning at cape grim: exploring photochemistry using multi-scale modelling. Atmospheric Chemistry and Physics, 17, 11707–11726.

    CAS  Article  Google Scholar 

  30. 30.

    Lee, H., Iraqui, O., Gu, Y., et al. (2018). Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia. Atmospheric Chemistry and Physics, 18, 6141–6156.

    CAS  Article  Google Scholar 

  31. 31.

    Lesslie, R., Thackway, R., & Smith, J. (2010). A national-level Vegetation Assets, States and Transitions (VAST) dataset for Australia (version 2). Canberra: Bureau of Rural Sciences.

    Google Scholar 

  32. 32.

    Lewis, P., & Corbett, S. (2002). Bushfires, air pollution and asthma. Medical Journal of Australia, 176, 517.

    Article  Google Scholar 

  33. 33.

    Li, Y., Henze, D., Jack, D., & Kinney, P. L. (2016). The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. Air Quality, Atmosphere and Health, 9, 51–68.

    CAS  Article  Google Scholar 

  34. 34.

    Liu, J., Pereira, G., Uhl, S., Bravo, M., & Bell, M. L. (2015). A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environmental Research, 136, 120–132.

    CAS  Article  Google Scholar 

  35. 35.

    McGregor, J., & Dix, M. (2008). An updated description of the conformal-cubic atmospheric model. In K. Hamilton & W. Ohfuchi (Eds.), High resolution numerical modelling of the atmosphere and ocean. New York: Springer.

    Google Scholar 

  36. 36.

    Meyer, C., Luhar, A., & Mitchell, R. (2008). Biomass burning emissions over northern Australia constrained by aerosol measurements: I – modelling the distribution of hourly emissions. Atmospheric Environment, 42, 1629–1646.

    CAS  Article  Google Scholar 

  37. 37.

    Navarro, K., Schweizer, D., Balmes, J., & Cisneros, R. (2018). A review of community smoke exposure from wildfire compared to prescribed fire in the United States. Atmosphere, 9(5), 185.

    CAS  Article  Google Scholar 

  38. 38.

    Nguyen, K., & McGregor, J. (2009). Modelling the Asian summer monsoon using CCAM. Climate Dynamics, 32, 219.

    Article  Google Scholar 

  39. 39.

    Nuryanto, D. (2015). Simulation of Forest fires smoke using WRF-Chem model with FINN fire emissions in Sumatera. Procedia Environmental Sciences, 24, 65–69.

    Article  Google Scholar 

  40. 40.

    Park, J., & Bae, H. (2006). Assessing the health benefits of the Seoul air quality management plan using BenMAP. Korean Journal of Environmental Health, 32(6 (WN.93), 2006.12), 571–577.

    CAS  Google Scholar 

  41. 41.

    Punger, E., & West, J. (2013). The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the United States. Air Quality, Atmosphere and Health, 6(3).

  42. 42.

    Ravi, V., Vaughan, J., Wolcott, M., & Lamb, B. (2018). Impacts of prescribed fires and benefits from their reduction for air quality, health and visibility in the Pacific northwest of the United States. Journal of the Air & Waste Management Association (1995).

  43. 43.

    Smith, M., Jalaludin, B., Byles, J., Lim, L., & Leeder, S. R. (1996). Asthma presentations to emergency departments in Western Sydney during the January 1994 bushfires. International Journal of Epidemiology, 25, 1227–1236.

    CAS  Article  Google Scholar 

  44. 44.

    Smith, I., Moise, A., Katzfey, J., et al. (2013). Regional-scale rainfall projections: simulations for the New Guinea region using the CCAM model. Journal of Geophysical Research-Atmospheres, 118, 1271–1280.

    Article  Google Scholar 

  45. 45.

    Thackway, R., & Lesslie, R. (2008). Describing and mapping human-induced vegetation change in the Australian Landscape. Environmental Management, 42, 572.

    Article  Google Scholar 

  46. 46.

    Thatcher, M., & McGregor, J. (2009). Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Monthly Weather Review, 137, 1742–1752.

    Article  Google Scholar 

  47. 47.

    Tolhurst, K., Shields, B., & Chong, D. (2008). Phoenix: development and application of a bushfire risk management tool. Australian Journal of Emergency Management, 23, 47–54.

    Google Scholar 

  48. 48.

    Im, U., Brandt, J., Geels, C., Hansen, K. M., Christensen, J. H., Andersen, M. S., Solazzo, E., Kioutsioukis, I., Alyuz, U., Balzarini, A., Baro, R., Bellasio, R., Bianconi, R., Bieser, J., Colette, A., Curci, G., Farrow, A., Flemming, J., Fraser, A., Jimenez-Guerrero, P., Kitwiroon, N., Liang, C. K., Nopmongcol, U., Pirovano, G., Pozzoli, L., Prank, M., Rose, R., Sokhi, R., Tuccella, P., Unal, A., Vivanco, M. G., West, J., Yarwood, G., Hogrefe, C., & Galmarini, S. (2018). Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3. Atmospheric Chemistry and Physics, 18, 5967–5989.

    CAS  Article  Google Scholar 

  49. 49.

    Veraverbeke, S., Sedano, F., Hook, S., et al. (2014). Mapping the daily progression of large wildland fires using MODIS active fire data. International Journal of Wildland Fire, 23, 655–667.

    Article  Google Scholar 

  50. 50.

    Wettstein, Z., Hoshiko, S., Fahim, J., et al. (2018). Cardiovascular and cerebrovascular emergency department visits associated with wildfire smoke exposure in California in 2015. Journal of the American Heart Association, 7(8), e007492.

    Article  Google Scholar 

  51. 51.

    WHO. (2013). Health risks of air pollution in Europe – HRAPIE project Recommendations for concentration–response functions for cost–benefit analysis of particulate matter, ozone and nitrogen dioxide. Retrieved from

  52. 52.

    Wiedinmyer, C., Akagi, S., et al. (2011). The Fire Inventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4, 625–641.

    Article  Google Scholar 

  53. 53.

    Wu, L., Taylor, M., & Handley, H. (2017). Remobilisation of industrial lead depositions in ash during Australian wildfires. Science of the Total Environment, 599-600, 1233–1240.

    CAS  Article  Google Scholar 

  54. 54.

    M. O. Andreae, P. Merlet, (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15 (4):955-966

Download references


The authors would like to thank Ivan Hannigan and Joshua Horsley of the University of Sydney for providing the software facility to calculate health impact used in this study.

Author information



Corresponding author

Correspondence to Hiep Duc Nguyen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix 1. Emission factors (EF) for flaming and smouldering of Carbon Bond 5 (CB5) mechanism species and the 2-bin CTM aerosol module

Table 6 Emission factors of CB5 species from Lawson et al. [29] (CSIRO) scheme, Andreae-Merlet (2001) and Andreae-Merlet (2001) and DELWP schemes

Appendix 2

Predicted cardiac and respiratory hospitalisation in each SA4 census district in the GMR due to the 5 to 9 May 2016 event

Fig. 18

Cardiac hospitalisation in each SA4 census district in the GMR due to fire event causing elevated PM2.5 for the period 5 to 9 May 2016

Fig. 19

Respiratory disease hospitalisation in each SA4 census district in the GMR due to fire event causing elevated PM2.5 for the period 5 to 9 May 2016

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.D., Trieu, T., Cope, M. et al. Modelling Hazardous Reduction Burnings and Bushfire Emission in Air Quality Model and Their Impacts on Health in the Greater Metropolitan Region of Sydney. Environ Model Assess 25, 705–730 (2020).

Download citation


  • Hazardous reduction burnings (HRB)
  • Smoke emission
  • CCAM-CTM air quality model
  • Smoke aerosols
  • Air quality health impact