Abstract
Spatial and temporal emissions of biogenic volatile organic compounds (BVOCs) were estimated over a wide range of Andean ecosystems/ecotones, exhibiting high variability and highlighting the importance of BVOC emissions in the Tropical Andes, as precursors of secondary pollutants, of which the main concern is tropospheric ozone. The biogenic altitudinal gradient (BIGA) model was applied to a 7436-km2 area of the Colombian Andes with an altitude ranging from 140 to 5287 m a.s.l. Preliminary results revealed critical points of BVOC emission in lower elevational zones. Isoprene and monoterpene emissions were 41% and 20%, respectively, and were higher on dry days. For both dry and wet, the maximum fluxes occurred at 15:00 hours. Isoprene emissions were also estimated with the Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) model that incorporates the module of Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGANv2.1). Isoprene comparison between MEGAN-WRF-Chem and BIGA suggests that these models estimate similar emission fluxes (maximum 13,200 μg m−2 h−1) on the same regions. However, the BIGA model was able to estimate higher-resolution flux and indicated the importance to resolve in mountain zones the altitude effect on BVOC emission. The BIGA model requires information from surface temperature and solar radiation (SR), a digital elevation model (DEM), and land cover and use (LCU) maps. This local information was processed at a resolution of 90 m × 90 m. The basic algorithm proposed by Guenther et al. (Journal of Geophysical Research 98:12609–12617, 1993) was implemented in the BIGA model using Matlab; the results were visualized with ArcGIS. In the Tropical Andes, small areas can be characterized by many distinct climactic zones that range from grasslands to mountain forests and paramo impacting BVOC emission rates and spatial distribution. Preliminary results show that the BIGA model adequately incorporated the strong Andean altitudinal gradient and differs from the global model MEGAN-WRF-Chem.
This is a preview of subscription content,
to check access.








Similar content being viewed by others
References
Müller, J.-F. (1992). Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. Geophysical Research, 97(D4), 3787–3804. https://doi.org/10.1029/91JD02757.
Bai, J., Guenther, A., Turnipseed, A., & Duhl, T. (2015). Seasonal and interannual variations in whole–ecosystem isoprene and monoterpene emissions from a temperate mixed forest in Northern China. Atmospheric Pollution Research, 6, 696–707. https://doi.org/10.5094/APR.2015.078.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., et al. (2014). Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 14, 9317–9341. https://doi.org/10.5194/acp-14-9317-2014.
EEA. (2013). B1101 non-managed & managed forests GB2013. EMEP/EEA air pollutant emission inventory guidebook 2013. Luxembourg: Technical guidance to prepare national emission inventories. https://doi.org/10.2800/92722.
Kallenbach, M., Oh, Y., Eilers, E. J., Veit, D., Baldwin, I. T., & Schuman, M. C. (2014). A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant Journal, 78(6), 1060–1072. https://doi.org/10.1111/tpj.12523.
Guenther, A., Zimmerman, P. R., Harley, P. C., Monson, R. K., & Fall, R. (1993). Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. Journal of Geophysical Research, 98(D7), 12609–12617. https://doi.org/10.1029/93JD00527.
Zhu, W., Luo, L., Cheng, Z., Yan, N., Lou, S., & Ma, Y. (2018). Characteristics and contributions of biogenic secondary organic aerosol tracers to PM2.5 in Shanghai, China. Atmospheric Pollution Research, 9(2), 179–188. https://doi.org/10.1016/j.apr.2017.09.001.
Da Silva, C. M., Da Silva, L. L., Corrêa, S. M., & Arbilla, G. (2018). A minimum set of ozone precursor volatile organic compounds in an urban environment. Atmospheric Pollution Research, 9(2), 369–378. https://doi.org/10.1016/j.apr.2017.11.002.
Li-Ramírez, J. A., Pérez-Zapata, Á. M., Duque-Méndez, N. D., & Aristizábal-Zuluaga, B. H. (2016). Generación y representación de Indicadores de calidad de aire: caso de estudio aplicado a Manizales. Iteckne, 13(2), 174–184.
Koca, H., Yaman, B., Meltem, A. Y., Altiok, H., Kara, M., Dumanoglu, Y., et al. (2013). Preparation of a national inventory of biogenic volatile organic compound (BVOC) emissions in Turkey-China STM focus. International Journal of Chemical, Environmental & Biological Sciences (IJCEBS), 1(4), 600–604.
UNC. (2014). Community modeling and analysis system CMAS. SMOKE v3.6 user’s manual. Chapel Hill: The Institute for the Environment-University of North Carolina.
Vukovich, J. M., & Pierce, T. (1988). The implementation of BEIS3 within the SMOKE modeling framework.
Sakulyanontvittaya, T., Piyachaturawat, P., Yarwood, G., & Guenther, A. (2010). Enhancement of Globeis, (582).
Baek, B. H., & Seppanen, C. (2018). Sparse Matrix Operator Kerner Emissions Modeling System (SMOKE). https://doi.org/10.5281/ZENODO.1421403.
Guenther, A., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012.
Cope, K. R., Snowden, M. C., & Bugbee, B. (2014). Photobiological interactions of blue light and photosynthetic photon flux: effects of monochromatic and broad-spectrum light sources. Photochemistry and Photobiology, 90(3), 574–584. https://doi.org/10.1111/php.12233.
WMO, & UNEP. (2017). Intergovernmental Panel on Climate Change. Task Force on National Greenhouse Gas Inventories.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957–6975. https://doi.org/10.1016/j.atmosenv.2005.04.027.
Li, L. Y., & Xie, S. D. (2014). Historical variations of biogenic volatile organic compound emission inventories in China, 1981–2003. Atmospheric Environment, 95, 185–196. https://doi.org/10.1016/j.atmosenv.2014.06.033.
Wong, C.-L., Yusop, Z., Venneker, R., & Uhlenbrook, S. (2018). Effects of topographic heterogeneity on coarse resolution grid-based runoff simulation—assessment for three river basins in Peninsular Malaysia. Environmental Modeling and Assessment, 23(3), 277–288. https://doi.org/10.1007/s10666-017-9576-0.
Gu, D., Guenther, A. B., Shilling, J. E., Yu, H., Huang, M., Zhao, C., Yang, Q., Martin, S. T., Artaxo, P., Kim, S., Seco, R., Stavrakou, T., Longo, K. M., Tóta, J., de Souza, R. A. F., Vega, O., Liu, Y., Shrivastava, M., Alves, E. G., Santos, F. C., Leng, G., & Hu, Z. (2017). Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nature Communications, 8(May), 15541. https://doi.org/10.1038/ncomms15541.
Ocampo, O. (2012). Análisis de Vulnerabilidad de la cuenca del río Chinchiná. Manizales: Universidad Nacional de Colombia.
Jaramillo Robledo, Á. (2005). Clima andino y café en Colombia (Hector Fab.). Chinchiná, Caldas: Federación Nacional de Cafeteros de Colombia.
Corpocaldas. (2007). Plan de gestión ambiental regional PGAR 2007-2019. Manizales.
Hincapié Suárez, J. N., Romo Melo, L., Vélez Upegui, J. J., & Chan, P. (2016). Classification of rainfall events for weather forecasting purposes in andean region of Colombia. In EGU General Assembly Conference Abstracts (Vol. 18, pp. 1–569).
NOAA. (2016). Cold & warm episodes by season. In Historical El Nino/La Nina episodes (1950-present). College Park.
IDEA & Corpocaldas. (2015). Centro de Datos e Indicadores Ambientales de Caldas (CDIAC). Generador de indicadores de clima.
Goodale, C., Aber, J., & Ollinger, S. (1998). Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Climate Research, 10, 35–49. https://doi.org/10.3354/cr010035.
Fries, A., Rollenbeck, R., Göttlicher, D., Nauss, T., Homeier, J., Peters, T., & Bendix, J. (2012). Thermal structure of a diverse andean mountain ecosystem in Southern Ecuador and its regionalization. Agricultural and Forest Meteorology, 152(1), 17–30. https://doi.org/10.3112/erdkunde.2009.04.03.
IDEAM. (2010). Leyenda Nacional de Coberturas de la Tierra. In N. J. M. Ardila, U. G. Murcia, & Garcí (Eds.), Metodología CORINE Land Cover Adapta para Colombia, Escala 1:100.000. Bogotá. D.C: Instituto de Hidrología, Meteorología y Estudios Ambientales.
Potosnak, M. J., Baker, B. M., LeStourgeon, L., Disher, D. M., Griffin, K. L., Bret-Harte, M. L., & Starr, G. (2013). Isoprene emissions from a tundra ecosystem. Biogeosciences, 10, 871–889. https://doi.org/10.5194/bg-10-871-2013.
Guenther, A., Karl, T., Wiedinmyer, C., Palmer, P., & Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181–3210.
Fries, A., Rollenbeck, R., NauB, T., Peters, T., & Bendix, J. (2012). Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agricultural and Forest Meteorology, 152(1), 17–30. https://doi.org/10.1016/j.agrformet.2011.08.004.
Kumar, L., Skidmore, A. K., & Knowles, E. (1997). Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science, 11(5), 475–497. https://doi.org/10.1080/136588197242266.
Hardy, D. R., Vuille, M., Braun, G., Keimig, F., & Bradley, R. S. (1998). Annual and daily meteorological cycles at high altitude on a tropical mountain. Bulletin of the American Meteorological Society, 79(9), 1899–1913. https://doi.org/10.1175/1520-0477(1998)079<1899:AADMCA>2.0.CO;2.
Guenther, A., Hewitt, C., & Erickson, D. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100(94), 8873–8892. https://doi.org/10.1029/94JD02950.
Thimijan, R. W., & Heins, R. D. (1983). Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience, 18(December), 818–822.
Aculinin, A. (2008). Photosynthetically active radiation in Moldova. Moldavian Journal of the Physical Sciences, 7(N1), 115–123.
González, C. M., Ynoue, R. Y., Vara-Vela, A., Rojas, N. Y., & Aristizábal, B. H. (2018). High-resolution air quality modeling in a medium-sized city in the Tropical Andes: assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmospheric Pollution Research, 9(5), 934–948. https://doi.org/10.1016/j.apr.2018.03.003.
Cárdenas, P. A. (2012). Desarrollo de un inventario geo-referenciado de emisiones biogénicas para el dominio de modelación meso-escala de Bogotá. Universidad Nacional de Colombia.
Toro, G. M. V., Cremades, O. L. V., & Ramirez, B. J. J. (2001). Inventario de emisiones biogenicas en el valle de Aburrá. Revista Ingeniería y Gestión Ambiental, 17(32).
US Environmental Protection Agency. (2014). National Emission Inventory (NEI) report, (April). Retrieved from https://www.epa.gov/sites/production/files/2017-04/documents/2014neiv1_profile_final_april182017.pdf
Greenberg, J. P., Guenther, A. B., Pétron, G., Wiedinmyer, C., Vega, O., Gatti, L. V., et al. (2004). Biogenic VOC emissions from forested Amazonian landscapes. Global Change Biology, 10(5), 651–662. https://doi.org/10.1111/j.1365-2486.2004.00758.x.
Alves, E. G., Harley, P., De, F., Gonçalves, C., Da, C. E., Moura, S., & Jardine, K. (2014). Effects of light and temperature on isoprene emission at different leaf developmental stages of Eschweilera coriacea in Central Amazon. Acta Amaz, 44(1), 9–18. https://doi.org/10.1590/S0044-59672014000100002.
Finlayson-Pitts, B. J., & Pitts, J. N. (2000). Chemistry of the upper and lower atmosphere theory experiments and applications (2nd ed.). New Jersey: Academic Press. https://doi.org/10.1016/B978-0-12-257060-5.X5000-X.
Sarofim, M. C. (2012). The GTP of methane: modeling analysis of temperature impacts of methane and carbon dioxide reductions. Environmental Modeling and Assessment, 17(3), 231–239. https://doi.org/10.1007/s10666-011-9287-x.
Finlayson-Pitts, B. J., & Pitts, J. N. (2000). The atmospheric system. In Chemistry of the upper and lower atmosphere. Theory, experiments, and applications (pp. 15–42). New Jersey: Academic Press. https://doi.org/10.1016/B978-012257060-5/50004-6.
Monson, R. K., Jones, R. T., Rosenstiel, T. N., & Schnitzler, J. P. (2013). Why only some plants emit isoprene. Plant, Cell and Environment, 36(3), 503–516. https://doi.org/10.1111/pce.12015.
Poupkou, A., Giannaros, T., Markakis, K., Kioutsioukis, I., Curci, G., Melas, D., & Zerefos, C. (2010). A model for European biogenic volatile organic compound emissions: software development and first validation. Environmental Modelling and Software, 25(12), 1845–1856. https://doi.org/10.1016/j.envsoft.2010.05.004.
Zhao, C., Huang, M., Fast, J. D., Berg, L. K., Qian, Y., Guenther, A., et al. (2016). Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California. Geoscientific Model Development, 9(5), 1959–1976. https://doi.org/10.5194/gmd-9-1959-2016.
Acknowledgments
The authors acknowledge the regional environmental authority (CORPOCALDAS) for supporting this project through “Convenio Interadministrativo de Asociación 130-2014 (Inter-Administrative Association Agreement 130-2014)” and the Universidad Nacional de Colombia Sede Manizales by the support through “Convocatoria para la Movilidad Internacional de la Universidad Nacional de Colombia 2016-2018 (Call for International Mobility 2016-2018).” Special thanks to Professor Alex Guenther for providing MEGANv2.1 Beta (Excel version) with the EF information and valuable advice. Also thanks to Carlos Mario Gonzalez who helps with the estimation of isoprene using the MEGAN-WRF-Chem model.
BIGA Model Download
The code of the model and a template are available at the official page: http://idea.manizales.unal.edu.co/gta/ingenieria_hidraulica/BIGA/index.php.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 1480 kb)
Rights and permissions
About this article
Cite this article
Li Ramírez, J.A., Zambrano Nájera, J.d.C. & Aristizábal Zuluaga, B.H. BVOC Emissions Along the Eastern and Western Slopes of the Andes Central Range with Strong Altitudinal Gradient over a Wide Range of Andean Ecosystems: Model Estimation/Disaggregation with BIGA. Environ Model Assess 25, 761–773 (2020). https://doi.org/10.1007/s10666-020-09698-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10666-020-09698-7