Skip to main content

Advertisement

Log in

Ecological Niche Modeling for Halophyte Species with Possible Anthropogenic Use in Agricultural Saline Soils

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The objective of this study was to generate an ecological niche modeling (ENM) to determine potential sites or areas where the growth and development of halophyte species are the most appropriate. To determine the number of halophyte species in the zone of study, the random quadrant method was used. The material collected per site was separated and identified. One hundred samples were taken from the soil at a depth of 20 cm for the analysis of five chemical properties. Evaporation, precipitation, and minimum and maximum temperature data were obtained from 34 meteorological stations. Geostatistical techniques were applied for the spatial prediction of the climate and soil variables. In addition, five scenes from the Sentinel-2A satellite and the digital elevation model were retrieved. Principal component analysis was performed on the 15 environmental predictors. Ten algorithms were used to conduct the ENM. The ENM results of the halophyte species were reclassified in binary maps. A species richness (PRS) map was created according to the predictions from the sum of binary maps. The PRS map was used to define the potential sites to grow and develop halophyte species of anthropogenic interest. Ten halophyte species were found in the sampled zone, of which 70% were native. The first seven principal components (95% of the cumulative variance) were used for the ENM. The AUC values of the halophyte species models ranged from 0.61 to 0.98. A total of 38% of the study area was considered suitable for potential sites of halophyte species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Turner, M. G. (2005). Landscape ecology: what is the state of the science? Annual Review of Ecology, Evolution, and Systematics, 36, 319–344. https://doi.org/10.1146/annurev.ecolsys.36.102003.152614.

    Article  Google Scholar 

  2. Dunning, J. B., Danielson, B. J., & Pulliam, R. (1992). Ecological processes that affect populations in complex landscapes. Oikos, 65, 169–175. https://doi.org/10.2307/3544901.

    Article  Google Scholar 

  3. Flores-Olvera, H., Czaja, A., Estrada-Rodríguez, J. L., & Méndez, U. R. (2016). Floristic diversity of halophytic plants of Mexico. In M. Khan, B. Boër, M. Ȫzturk, M. Clüsener-Godt, B. Gul, & S. W. Breckle (Eds.), Sabkha Ecosystems. Tasks for Vegetation Science, vol 48. Cham: Springer. https://doi.org/10.1007/978-3-319-27093-7_17.

    Chapter  Google Scholar 

  4. Gairola, S., Bhatt, A., & El-Keblawy, A. (2015). A perspective on potential use of halophytes for reclamation of salt-affected lands. Wulfenia, 22(1), 88–97.

    Google Scholar 

  5. Riadh, K., Wided, M., Hans-Werner, K., & Chedly, A. (2010). Responses of halophytes to environmental stresses with special emphasis to salinity. Advances in Botanical Research, 53, 117–145. https://doi.org/10.1016/S0065-2296(10)53004-0.

    Article  Google Scholar 

  6. Panta, S., Flowers, T., Lane, P., Doyle, R., Haros, G., & Shabala, S. (2014). Halophyte agriculture: success stories. Environmental and Experimental Botany, 107, 71–83. https://doi.org/10.1016/j.envexpbot.2014.05.006.

    Article  Google Scholar 

  7. Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International. https://doi.org/10.1155/2014/589341.

  8. Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions (MPB-49) (Vol. 56). Princeton University Press, Princeton, New Jersey, USA.

  9. Khoury, C. K., Castañeda-Alvarez, N. P., Achicanoy, H. A., Sosa, C. C., Bernau, V., Kassa, M. T., & Jarvis, A. (2015). Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biological Conservation, 184, 259–270. https://doi.org/10.1016/j.biocon.2015.01.032.

    Article  Google Scholar 

  10. Cruz-Cárdenas, G., López-Mata, L., Villaseñor, J. L., & Ortiz, E. (2014). Potential species distribution modeling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad, 85, 189–199.

    Article  Google Scholar 

  11. Salako, V. K., Vihotogbé, R., Houéhanou, T., Sodé, I. A., & Kakaï, R. G. (2019). Predicting the potential impact of climate change on the declining agroforestry species Borassus aethiopum Mart. in Benin: A mixture of geostatistical and SDM approach. Agroforestry Systems, 93(4), 1513–1530.

    Article  Google Scholar 

  12. Cruz-Cárdenas, G., López-Mata, L., Ortiz-Solorio, C. A., Villaseñor, J. L., Ortiz, E., Silva, J. T., & Estrada-Godoy, F. (2014). Interpolation of Mexican soil properties at a scale of 1: 1,000,000. Geoderma, 213, 29–35. https://doi.org/10.1016/j.geoderma.2013.07.014.

    Article  Google Scholar 

  13. Rodriguez, Y. J., Vázquez-Sánchez, M., Cruz-Cárdenas, G., & Villaseñor, J. L. (2019). Use of ecological niche models of plant species to optimize placement of apiaries. Journal of Apicultural Science, 63(2). https://doi.org/10.2478/JAS-2019-0017.

  14. INEGI. (2014). Conjunto de datos vectoriales edafológico, escala 1:250000 Serie II. (Continuo Nacional)', escala: 1:250000. edición: 2. México: Instituto Nacional de Estadística y Geografía. Aguascalientes, Ags.

    Google Scholar 

  15. García, E. (1998). Climas (clasificación de Koppen, modificado por García). Escala 1:1000000. México: UNAM.

    Google Scholar 

  16. Silva-García, J. T., Ochoa-Estrada, S., Cristóbal-Acevedo, D., & Estrada-Godoy, F. (2006). Calidad química del agua subterránea de la Ciénega de Chapala como factor de degradación del suelo. Terra Latinoamericana, 24(4), 503–513.

    Google Scholar 

  17. SIAP (2016). Producción Agrícola. 26 october 2016. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119.

  18. Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology. New York: John Wiley & Sons.

    Google Scholar 

  19. Sánchez, B. J., & Guevara, F. F. (2013). Plantas arvenses asociadas a cultivos de maíz de temporal en suelos salinos de la ribera del lago de Cuitzeo, Michoacán, México. Acta Botánica Mexicana, 105, 107–129.

    Article  Google Scholar 

  20. Rzedowski, J., & Rzedowski, G. C. (1985). Flora fanerogámica del Valle de México. Vol II, III. Dicotyledoneae. México: Escuela Nacional de Ciencias Bilógicas, Instituto Politécnico Nacional e Instituto de Ecología 674 pp.

    Google Scholar 

  21. McVaugh, R. (1984). Compositae. Flora Novo-Galiciana, 12, 1–1157.

    Google Scholar 

  22. Beetle, A. A., Manrique, E. F., Jaramillo, V. L., Guerrero, P. S., Miranda, J. S., Nuñez, I. T., & Chimal, A. H. (1987). Las gramíneas de México. Tomo II-III-IV. Comisión Técnico-Consultiva de Coeficientes de Agostaderos. México: Secretaría de Agricultura y Recursos Hidráulicos. Editorial Calypso 344 pp.

    Google Scholar 

  23. Espinosa-García, F. J., & Sarukhán, J. (1997). Manual de malezas del Valle de México. México, D.F., México: Universidad Nacional Autónoma de México - Fondo de Cultura Económica 407 pp.

    Google Scholar 

  24. Anaya-Flores, R., Cruz-Cárdenas, G., Silva, J. T., Ochoa-Estrada, S., & Álvarez-Bernal, D. (2018). Space-time modeling of the electrical conductivity of soil in a geothermal zone. Communications in Soil Science and Plant Analysis, 49(9), 1107–1118. https://doi.org/10.1080/00103624.2018.1448862.

    Article  Google Scholar 

  25. Mulla, D. J., & McBratney, A. J. (2002). Soil spatial variability. pp 343–375. In A.W. Warrick (Ed.), Soil Physics Companion, CRC, Washington.

  26. Gee, W., & Bauder, W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods (pp. 383–411). Wisconsin: Soil Science Society of America.

    Google Scholar 

  27. CLICOM (2014). Base de datos climatológica nacional. April [online] http://clicom-mex.cicese.mx/ Accessed 23 april 2014.

  28. Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89(1–2), 1–45. https://doi.org/10.1016/S0016-7061(98)00078-0.

    Article  Google Scholar 

  29. Gassner, A., & Schnug, E. (2008). Geostatistics for soil science. In L. Rattan (Ed.), Encyclopedia of Soil Science (pp. 760–764). Boca Raton: CRC.

    Google Scholar 

  30. Gallardo, A. (2006). Geoestadística. Ecosistemas, 3, 49–59.

    Google Scholar 

  31. Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x.

    Article  Google Scholar 

  32. Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers and Geosciences, 30(7), 683–691. https://doi.org/10.1016/j.cageo.2004.03.012.

    Article  Google Scholar 

  33. Kravchenko, A., & Bullock, D. G. (1999). A comparative study of interpolation methods for mapping soil properties. Agronomy Journal, 91(3), 393–400. https://doi.org/10.2134/agronj1999.00021962009100030007x.

    Article  Google Scholar 

  34. Gama, M., Crespo, D., Dolbeth, M., & Anastácio, P. M. (2017). Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquatic Conservation: Marine and Freshwater Ecosystems, 27(3), 675–684. https://doi.org/10.1002/aqc.2767.

    Article  Google Scholar 

  35. Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789. https://doi.org/10.1111/jbi.12058.

    Article  Google Scholar 

  36. Saarimaa, M., Aapala, K., Tuominen, S., Karhu, J., Parkkari, M., & Tolvanen, A. (2019). Predicting hotspots for threatened plant species in boreal peatlands. Biodiversity and Conservation, 28(5), 1173–1204. https://doi.org/10.1007/s10531-019-01717-8.

    Article  Google Scholar 

  37. R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  38. QGIS Development Team (2018). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  39. Arefin, M. S., Hossain, M. K., & Hossain, M. A. (2017). Plant diversity of Sonadia Island an ecologically critical area of South-East Bangladesh. Bangladesh Journal of Plant Taxonomy, 24(1), 107–116. https://doi.org/10.3329/bjpt.v24i1.33037.

    Article  Google Scholar 

  40. Umadevi, S., Mohanta, G. P., Kalaichelvan, V. K., & Manavalan, R. (2006). Studies on wound healing effect of Flaveria trinervia leaf in mice. Indian Journal of Pharmaceutical Sciences, 68(1), 106. https://doi.org/10.4103/0250-474X.22979.

    Article  Google Scholar 

  41. Sukalingam, K., Ganesan, K., & Xu, B. (2017). Trianthema portulacastrum L (giant pigweed): phytochemistry and pharmacological properties. Phytochemistry Reviews, 16(3), 461–478. https://doi.org/10.1007/s11101-017-9493-5.

    Article  Google Scholar 

  42. Taha, A., & Alsayed, H. (2000). Brine shrimp bioassay of ethanol extracts of Sesuvium verrucosum, Salsola baryosma and Zygophyllum quatarense medicinal plants from Bahrain. Phytotherapy Research, 14(1), 48–50. https://doi.org/10.1002/(SICI)1099-1573(200002)14:1<48::AID-PTR536>3.0.CO;2-Z.

    Article  Google Scholar 

  43. Uabundit, N., Wattanathorn, J., Mucimapura, S., & Ingkaninan, K. (2010). Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. Journal of Ethnopharmacology, 127(1), 26–31. https://doi.org/10.1016/j.jep.2009.09.056.

    Article  Google Scholar 

  44. Hansen, D. J., Dayanandan, P., Kaufman, P. B., & Brotherson, J. D. (1976). Adaptaciones ecológicas de la hierba de las marismas, Distichlis spicata (Gramineae), y factores ambientales que afectan su crecimiento y distribución. American Journal of Botany, 63(5), 635–650. https://doi.org/10.1002/j.1537-2197.1976.tb11851.x.

    Article  Google Scholar 

  45. Oi, T., Miyake, H., & Taniguchi, M. (2014). Excretion of salt through the cuticle without disintegration of fine structures in the salt glands of Rhodes grass (Chloris gayana Kunth). Flora-Morphology, Distribution, Functional Ecology of Plants, 209(3–4), 185–190. https://doi.org/10.1016/j.flora.2014.02.004.

    Article  Google Scholar 

  46. Snow, N., Peterson, P. M., Romaschenko, K., & Simon, B. K. (2018). Monograph of Diplachne (Poaceae, Chloridoideae, Cynodonteae). PhytoKeys, 93, 1. https://doi.org/10.3897/phytokeys.93.21079.

    Article  Google Scholar 

  47. Palacio-Rodríguez, R., Coria-Arellano, J. L., López-Bucio, J., Sánchez-Salas, J., Muro-Pérez, G., Castañeda-Gaytán, G., & Sáenz-Mata, J. (2017). Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts. Symbiosis, 73(3), 179–189. https://doi.org/10.1007/s13199-017-0481-8.

    Article  Google Scholar 

  48. Camazine, S., & Bye, R. A. (1980). A study of the medical ethnobotany of the Zuni Indians of New Mexico. Journal of Ethnopharmacology, 2(4), 365–388.

    Article  Google Scholar 

  49. Fauvelle, M., Esch, E., & Somerville, A. (2017). Climate change and subsistence exchange in southern California: was western sea-purslane a channel island trade good? American Antiquity, 82(1), 183–188. https://doi.org/10.1016/S0378-8741(80)81017-8.

    Article  Google Scholar 

  50. Polatoğlu, K., Demirci, B., Çalış, İ., & Başer, K. H. C. (2017). Difference in volatile composition of Chenopodium murale from two different locations of Cyprus. Records of Natural Products, 11, 88–91.

    Google Scholar 

  51. Sinha, S. (1999). Accumulation of Cu, Cd, Cr, Mn and Pb from artificially contaminated soil by Bacopa monnieri. Environmental Monitoring and Assessment, 57(3), 253–264. https://doi.org/10.1023/A:1006091215529.

    Article  Google Scholar 

  52. Franco-Hernandez, M. O., Vásquez-Murrieta, M. S., Patiño-Siciliano, A., & Dendooven, L. (2010). Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresource Technology, 101(11), 3864–3869. https://doi.org/10.1016/j.biortech.2010.01.013.

    Article  Google Scholar 

  53. McBratney, A. B., & Pringle, M. J. (1999). Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture, 1(2), 125–152. https://doi.org/10.1023/A:1009995404447.

    Article  Google Scholar 

  54. Liebhold, A. M., Rossi, R. E., & Kemp, W. P. (1993). Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology, 38(1), 303–327. https://doi.org/10.1146/annurev.en.38.010193.001511.

    Article  Google Scholar 

  55. Hengl, T., Sierdsema, H., Radovik, A., & Dilo, A. (2009). Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging. Ecological Modelling, 220(24), 3499–3511. https://doi.org/10.1016/j.ecolmodel.2009.06.038.

    Article  Google Scholar 

  56. Cruz-Cárdenas, G., Silva, J. T., Ochoa-Estrada, S., Estrada-Godoy, F., & Nava-Velázquez, J. (2017). Delineation of environmental units by multivariate techniques in the Duero River Watershed, Michoacán, Mexico. Environmental Modeling and Assessment, 22(3), 257–266. https://doi.org/10.1007/s10666-016-9534-2.

    Article  Google Scholar 

  57. Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22(2), 187–193. https://doi.org/10.1016/j.copbio.2010.12.003.

    Article  Google Scholar 

  58. Paul, D., & Sinha, S. N. (2013). Isolation of phosphate solubilizing bacteria and total heterotrophic bacteria from river water and study of phosphatase activity of phosphate solubilizing bacteria. Advances in Applied Science Research, 4(4), 409–412.

    Google Scholar 

  59. Qadir, M., & Oster, J. D. (2004). Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Science of the Total Environment, 323(1–3), 1–19. https://doi.org/10.1016/j.scitotenv.2003.10.012.

    Article  Google Scholar 

  60. Beneduzi, A., Moreira, F., Costa, P. B., Vargas, L. K., Lisboa, B. B., Favreto, R., Ivo, J. B., & Passaglia, L. M. P. (2013). Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Applied Soil Ecology, 63, 94–104. https://doi.org/10.1016/j.apsoil.2012.08.010.

    Article  Google Scholar 

  61. Von Sengbusch, P. (2003). Halophytes. Botanik Online. University of Hamburg.

  62. Chiarucci, A., Calderisi, M., Casini, F., & Bonini, I. (2008). Vegetation at the limits for vegetation: vascular plants, bryophytes and lichens in a geothermal field. Folia Geobotanica, 43(1), 19–33. https://doi.org/10.1007/s12224-008-9002-0.

    Article  Google Scholar 

  63. Rosas, E. R., Urrutía, F. J., & Maciel, R. (1989). Geología del extremo oriental del graben de Chapala, breve discusión. Revista Mexicana de Geociencias, 5, 3–18.

    Google Scholar 

  64. Mohanty, S. K., Saiers, J. E., & Ryan, J. N. (2015). Colloid mobilization in a fractured soil during dry-wet cycles: role of drying duration and flow path permeability. Environmental Science & Technology, 49(15), 9100–9106. https://doi.org/10.1021/acs.est.5b00889.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cruz-Cárdenas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 4
figure 4

Predicted distribution of presence-absence halophytic. (a) Bacopa monnieri L., (b) Distichlis spicata L., (c) Sesuvium verrucosum Raf., (d) Diplachne fusca (L.) P. Beauv. ex Roem. & Schult., (e) Chloris gayana Kunth, (f) Flaveria trinervia (Spreng.) C. Mohr., (g) Trianthema portulacastrum L., (h) Chenopodium murale L., (i) Rumex mexicanus Meisn., (j) Heliotropium curassavicum L.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lastiri-Hernández, M.A., Cruz-Cárdenas, G., Álvarez-Bernal, D. et al. Ecological Niche Modeling for Halophyte Species with Possible Anthropogenic Use in Agricultural Saline Soils. Environ Model Assess 25, 429–440 (2020). https://doi.org/10.1007/s10666-020-09690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-020-09690-1

Keywords

Navigation