Challenges Calibrating Hydrology for Groundwater-Fed Wetlands: a Headwater Wetland Case Study


This study aims to adapt the Soil and Watershed Assessment Tool (SWAT), a ubiquitously used watershed model, for groundwater dominated surface waterbodies by accounting for recharge from the aquifers. Using measured flow to a headwater slope wetland in Alabama’s coastal plain region as a case study, we present challenges and relatively simple approaches in using the SWAT model to predict flows from the draining watershed and relatively simple approaches to model groundwater upwelling. SWAT-simulated flow at the study watershed was limited by precipitation, and consequently, simulated flows were several times smaller in magnitude than observed flows. Thus, our first approach involved a separate stormflow and baseflow calibration which included the use of a regression relationship between observed and simulated baseflow (ENASH = 0.67). Our next approach involved adapting SWAT to simulate upwelling groundwater discharge instead of deep aquifer losses by constraining the range of deep losses, βdeep parameter, to negative values (ENASH = 0.75). Finally, we also investigated the use of artificial neural networks (ANN) in conjunction with SWAT to further improve calibration performance. This approach used SWAT-calibrated flow, evapotranspiration, and precipitation as inputs to ANN (ENASH = 0.88). The methods investigated in this study can be used to navigate similar flow calibration challenges in other groundwater dominant watersheds which can be very useful tool for managers and modelers alike.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Abbaspour, K. C., Yang, J., Reichert, P., Vejdani, M., Haghighat, S., & Srinivasan, R. (2008). SWAT-CUP. Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Zurich, Switzerland: SWAT calibration and uncertainty programs.

    Google Scholar 

  2. 2.

    Amatya, D. M., & Jha, M. K. (2011). Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina. Transactions of the American Society of Agricultural and Biological Engineers, 54(6), 2151–2163.

    Google Scholar 

  3. 3.

    Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment: part I. Model development. Journal of the American Water Resources Association, 34(1), 73–89.

    Article  CAS  Google Scholar 

  4. 4.

    Barksdale, W. F., Anderson, C. J., & Kalin, L. (2014). The influence of watershed run-off on the hydrology, forest floor litter and soil carbon of headwater wetlands: run-off effects on hydrology, leaf litter and soils of headwater wetlands. Ecohydrology, 7, 803–814.

    Article  Google Scholar 

  5. 5.

    Bosch, D. D., Sheridan, J. M., Batten, H. L., & Arnold, J. G. (2004). Evaluation of the SWAT model on a coastal plain agricultural watershed. Transactions of the ASAE, 47(5), 1493–1506.

    Article  Google Scholar 

  6. 6.

    Brinson, M. M. (1993). Changes in the functioning of wetlands along environmental gradients. Wetlands, 13, 65–74.

    Article  Google Scholar 

  7. 7.

    Cibin, R., Athira, P., Sudheer, K. P., & Chaubey, I. (2013). Application of distributed hydrological models for predictions in ungauged basins: a method to quantify predictive uncertainty. Hydrological Processes, 28, 2033–2045.

    Article  Google Scholar 

  8. 8.

    Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The Soil and Water Assessment Tool: historical development, applications, and future research directions. Center for Agricultural and Rural Development: Iowa State University.

    Google Scholar 

  9. 9.

    Gomi, T., Sidle, R. C., & Richardson, J. S. (2002). Understanding processes. and downstream linkages of headwater systems. BioScience, 52(10), 905–916.

    Article  Google Scholar 

  10. 10.

    Guzman, J. A., Moriasi, D. N., Gowda, P. H., Steiner, J. L., Starks, P. J., Arnold, J. G., & Srinivasan, R. (2015). A model integration framework for linking SWAT and MODFLOW. Environmental Modelling and Software, 73, 103–116.

    Article  Google Scholar 

  11. 11.

    Hamon, W. R. (1961). Estimating potential evapotranspiration. Journal of Hydraulics Division, 871, 107–120.

    Google Scholar 

  12. 12.

    Isik, S., Kalin, L., Schoonover, J. E., Srivastava, P., & Lockaby, B. G. (2013). Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach. Journal of Hydrology, 485, 103–112.

    Article  Google Scholar 

  13. 13.

    Kalin, L., & Hantush, M. M. (2006). Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data. Journal of Hydrologic Engineering, 11, 555–569.

    Article  Google Scholar 

  14. 14.

    Kalin, L., Isik, S., Schoonover, J. E., & Lockaby, B. G. (2010). Predicting water quality in unmonitored watersheds using artificial neural networks. Journal of Environment Quality, 39, 1429.

    Article  CAS  Google Scholar 

  15. 15.

    Kim, R. J., Loucks, D. P., & Stedinger, J. R. (2012). Artificial neural network models of watershed nutrient loading. Water Resources Management, 26, 2781–2797.

    Article  Google Scholar 

  16. 16.

    Lam, Q. D., Schmalz, B., & Fohrer, N. (2010). Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT Model. Agricultural Water Management, 97, 317–325.

    Article  Google Scholar 

  17. 17.

    Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology W. San Francisco, California: H. Freeman and Co..

    Google Scholar 

  18. 18.

    Lim, K. J., Engel, B. A., Tang, Z., Choi, J., Kim, K.-S., Muthukrishnan, S., & Tripathy, D. (2005). Automated Web GIS based Hydrograph Analysis Tool, WHAT. Journal of the American Water Resources Association, 41, 1407–1416.

    Article  Google Scholar 

  19. 19.

    Lu, J., Sun, G., McNulty, S. G., & Amatya, D. M. (2005). A comparison of six potential evapotranspiration methods for regional use in the Southeastern United States. Journal of the American Water Resources Association, 41(3), 621–633.

    Article  Google Scholar 

  20. 20.

    Makarewicz, J. C., Lewis, T. W., Rea, E., Winslow, M. J., & Pettenski, D. (2015). Using SWAT to determine reference nutrient conditions for small and large streams. Journal of Great Lakes Research, 41, 123–135.

    Article  CAS  Google Scholar 

  21. 21.

    McBride, E. H., & Burgess, L. H. (1964). Soil survey of Baldwin County, Alabama. USDA-SCS Soil Survey Report 12:110. Washington (DC): USDA-SCS.

    Google Scholar 

  22. 22.

    Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulation. Transactions of the ASABE, 50(3), 885–900.

    Article  Google Scholar 

  23. 23.

    Murgulet, D., & Tick, G. (2007). The extent of saltwater intrusion in Southern Baldwin County, Alabama. Environmental Geology, 55, 1235–1245.

    Article  CAS  Google Scholar 

  24. 24.

    Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part I. A discussion of principles. Journal of Hydrology, 10, 282–290.

    Google Scholar 

  25. 25.

    Neitsch, S. L., Arnold, J. C., Kiniry, J. R., & Williams, J. R. (2001). Soil and Water Assessment Tool (SWAT) user’s manual: version 2000. U.S. Department of Agriculture, Agricultural Research Service, Grassland, Soil, and Water Research Laboratory, Temple, Texas.

  26. 26.

    Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2009). Soil and Water Assessment Tool (SWAT) theoretical documentation: version 2000. U.S. Department of Agriculture, Agricultural Research Service, Grassland, Soil, and Water Research Laboratory, Temple, Texas.

  27. 27.

    Noble, C. V., Wakeley, J. S., Roberts, T. H., & Henderson, C. (2007). Regional guidebook for applying the hydrogeomorphic approach to assessing the functions of headwater slope wetlands on the Mississippi and Alabama coastal plains. US Army Corps of Engineers ERDC/EL TR-07–9. Vicksburg (MS): US Army Corps of Engineers.

    Google Scholar 

  28. 28.

    Noori, N., & Kalin, L. (2016). Coupling SWAT and ANN models for enhanced daily streamflow prediction. Journal of Hydrology, 533, 141–151.

    Article  Google Scholar 

  29. 29.

    Pechlivanidis, I. G., Jackson, B. M., McIntyre, N. R., & Wheater, H. S. (2011). Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global NEST Journal, 13, 193–214.

    Google Scholar 

  30. 30.

    Rantz, S. E., et al. (1982). Measurement and computation of streamflow: U.S. Geological Survey Water-Supply Paper 2175, 2 v., 631 p.

  31. 31.

    Rezaeianzadeh, M., Kalin, L., & Anderson, C. J. (2015). Wetland water-level prediction using ANN in conjunction with base-flow recession analysis. Journal of Hydrologic Engineering, 22, D4015003.

    Google Scholar 

  32. 32.

    Rheinhardt, R. D., Rheinhardt, M. C., Brinson, M. M., & Faser, K. (1998). Forested wetlands of low order streams in the inner coastal plain of North Carolina, USA. Wetlands, 18, 365–378.

    Article  Google Scholar 

  33. 33.

    Rheinhardt, R. D., Rheinhardt, M. C., Brinson, M. M., & Faser,Jr. K. E. (1999). Application of reference data for assessing and restoring headwater ecosystems. Restoration Ecology 7(3):241–251.

  34. 34.

    Robinson, J. L., Moreland, R. S., & Clark, A. E. (1996). Ground-water resources data for Baldwin County, Alabama. In US Geological Survey. Branch of Information: Services.

    Google Scholar 

  35. 35.

    Roy, A. H., Dybas, A. L., Fritz, K. M., & Lubbers, H. R. (2009). Urbanization affects the extent and hydrologic permanence of headwater streams in a midwestern US Metropolitan area. Journal of the North American Benthological Society, 28, 911–928.

    Article  Google Scholar 

  36. 36.

    Salas, J. D., Markus, M., & Tokar, A. S. (2000). Streamflow forecasting based on artificial neural networks. Artificial Neural Networks in Hydrology 23–51.

  37. 37.

    Shaneyfelt, R. C., & Metcalf, C. (2014). Coastal Alabama pilot headwater stream survey study, ADEM-ACNPCP, MCSWCD and U.S. EPA-R4; 53 pp.

  38. 38.

    Sophocleous, M., & Perkins, S. P. (2000). Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology, 236, 185–201.

    Article  Google Scholar 

  39. 39.

    Srivastava, P., McNair, J. N., & Johnson, T. E. (2006). Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed. Journal of the American Water Resources Association, 42, 545–563.

    Article  Google Scholar 

  40. 40.

    Talebizadeh, M., Morid, S., Ayyoubzadeh, S. A., & Ghasemzadeh, M. (2010). Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resources Management, 24, 1747–1761.

    Article  Google Scholar 

  41. 41.

    Vis, M., Knight, R., Pool, S., Wolfe, W., & Seibert, J. (2015). Model calibration criteria for estimating ecological flow characteristics. Water, 7, 2358–2381.

    Article  Google Scholar 

  42. 42.

    Wang, R., & Kalin, L. (2011). Modelling effects of land use/cover changes under limited data. Ecohydrology, 4, 265–276.

    Article  Google Scholar 

  43. 43.

    Winter, T. C., Rosenberry, D. O., & LaBaugh, J. W. (2003). Where does the ground water in small watersheds come from? Ground Water, 41, 989–1000.

    Article  CAS  Google Scholar 

  44. 44.

    Zeng, R., & Cai, X. (2014). Analyzing streamflow changes: irrigation-enhanced interaction between aquifer and streamflow in the Republican River basin. Hydrology and Earth System Sciences, 18, 493–502.

    Article  Google Scholar 

Download references


The work reported in this document was funded by the U.S. Environmental Protection Agency (EPA or the Agency) under Work Assignment WA 1-57 of contract no. EP-C-15-010 through its Office of Research and Development. EPA funded and managed, or partially funded and collaborated in, the research described herein.

Author information



Corresponding author

Correspondence to R. Ramesh.

Ethics declarations


This document has been subjected to the Agency’s peer and administrative reviews and has been approved for publication. Any opinions expressed in this report are those of the authors and do not necessarily reflect the views of the Agency; therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramesh, R., Kalin, L., Hantush, M. et al. Challenges Calibrating Hydrology for Groundwater-Fed Wetlands: a Headwater Wetland Case Study. Environ Model Assess 25, 355–371 (2020).

Download citation


  • Wetland
  • Model
  • SWAT
  • Headwater slope wetland
  • High baseflow
  • Artificial neural networks