Hydrodynamic Modeling for Flood Hazard Assessment in a Data Scarce Region: a Case Study of Bharathapuzha River Basin

  • Xavier K. Jacob
  • Deepak Singh BishtEmail author
  • Chandranath Chatterjee
  • Narendra Singh Raghuwanshi


Flood hazard is assessed for the data scarce lower Bharathapuzha basin in Kerala, India, using a hydrologic-hydraulic approach. L-moment-based regional flood frequency analysis along with a non-dimensional analysis of hydrographs is used to generate scenarios for flood hazard assessment. A fully hydrodynamic 1D river flow model is calibrated for the rivers of lower Bharathapuzha basin for the year 1992 and validated for the year 1994. The widely available SRTM DEM is used to extract river cross-sections and the limited available discharge and water level data are used to carefully calibrate the 1D river flow model. Subsequently, a coupled 1D-2D flood inundation model is used to simulate the flood inundation extent for the year 2002. In the absence of LIDAR data, a cartographic DEM derived from readily available topo maps is used as an input in the coupled 1D-2D model. Further, in the absence of microwave Synthetic Aperture Radar (SAR) data, the flood inundation extent is validated using the readily available optical IRS-1D WiFS sensor data which is mainly intended for vegetation and drought monitoring. A suitable methodology is used to delineate flood inundation extent from the partial cloud-covered WiFS image. The regional flood frequency estimates and the calibrated and validated flood inundation model are then used to assess the flood hazard.


Regional flood frequency L-moment Flood inundation modeling MIKE 11 MIKE FLOOD SRTM DEM Cartographic DEM WiFS sensor Hazard assessment 



  1. 1.
    Álvarez, M., Puertas, J., Peña, E., & Bermúdez, M. (2017). Two-dimensional dam-break flood analysis in data-scarce regions: The case study of Chipembe dam, Mozambique. Water, 9, 432. Scholar
  2. 2.
    Apel, H., Thieken, A. H., Merz, B., & Blöschl, G. (2004). Flood risk assessment and associated uncertainty. Natural Hazards and Earth System Sciences, 4, 295–308.CrossRefGoogle Scholar
  3. 3.
    Aronica, G., Bates, P. D., & Horritt, M. S. (2002). Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrological Processes, 16, 2001–2016. Scholar
  4. 4.
    Bates, P., & De Roo, A. P. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236, 54–77. Scholar
  5. 5.
    Bates, P. D., Anderson, M. G., Baird, L., Walling, D. E., & Simm, D. (1992). Modelling floodplain flows using a two-dimensional finite element model. Earth Surface Processes and Landforms, 17, 575–588. Scholar
  6. 6.
    Bates, P. D., Anderson, M. G., Hervouet, J.-M., & Hawkes, J. C. (1997a). Investigating the behaviour of two-dimensional finite element models of compound channel flow. Earth Surface Processes and Landforms, 22, 3–17.<3::AID-ESP667>3.0.CO;2-U.CrossRefGoogle Scholar
  7. 7.
    Bates, P. D., Horritt, M. S., Smith, C. N., & Mason, D. (1997b). Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrological Processes, 11, 1777–1795.<1777::AID-HYP543>3.0.CO;2-E.CrossRefGoogle Scholar
  8. 8.
    Bermúdez, M., Álvarez, M., Puertas, J., et al. (2018). Evaluating the suitability of airbus worlddem for flood modelling in data-scarce regions: The case study of the Megaruma River, Mozambique. WIT Transactions on The Built Environment, 184, 113–120. Scholar
  9. 9.
    Bhuyan, A., Borah, M., & Kumar, R. (2010). Regional flood frequency analysis of north-bank of the river Brahmaputra by using LH-moments. Water Resources Management, 24, 1779–1790. Scholar
  10. 10.
    Bhuyian, N. M., & Kalyanapu, A. (2017). Accounting digital elevation uncertainty for flood consequence assessment. Flood Risk Management, 11, S1051–S1062. Scholar
  11. 11.
    Bisht, D. S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo, M., & Panda, A. (2016). Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study. Natural Hazards, 84, 749–776. Scholar
  12. 12.
    Casas, A., Benito, G., Thorndycraft, V. R., & Rico, M. (2006). The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms, 31, 444–456. Scholar
  13. 13.
    Central Water Commission. (2010). Water and related statistics. New Delhi: CWC.Google Scholar
  14. 14.
    Chatterjee, C., Förster, S., & Bronstert, A. (2008). Comparison of hydrodynamic models of different complexities to model floods with emergency storage areas. Hydrological Processes, 22, 4695–4709. Scholar
  15. 15.
    Chebana, F., & Ouarda, T. B. M. J. (2007). Multivariate L-moment homogeneity test. Water Resources Research, 43.
  16. 16.
    Chow, V. T. (1959). Open-channel hydraulics. New York: McGraw-Hill Book Company.Google Scholar
  17. 17.
    Cunderlik, J. M., & Burn, D. H. (2006). Switching the pooling similarity distances: Mahalanobis for Euclidean. Water Resources Research, 42.
  18. 18.
    DHI. (1997). MIKE11 GIS reference and user manual.Google Scholar
  19. 19.
    DHI. (2000). MIKE 21 Short introduction and tutorial.Google Scholar
  20. 20.
    DHI. (2004). MIKEFLOOD 1D-2D modeling user manual.Google Scholar
  21. 21.
    Dhondia Z, Stelling G (2002) Application of one-dimensional-two-dimensional integrated hydraulic model for flood simulation and damage assessment. In: International Conference on Hydroinformatics. Cardiff, UK, pp 265–276.Google Scholar
  22. 22.
    FEMA. (2003). Federal Emergency Management Agency. Accessed 25 Mar 2019.
  23. 23.
    FEMA. (2009). Mapping the zone: Improving flood map accuracy.Google Scholar
  24. 24.
    Förster, S., Chatterjee, C., & Bronstert, A. (2008). Hydrodynamic simulation of the operational management of a proposed flood emergency storage area at the Middle Elbe River. River Research and Applications, 24, 900–913. Scholar
  25. 25.
    Franks, S. W., Gineste, P., Beven, K. J., & Merot, P. (1998). On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process. Water Resources Research, 34, 787–797. Scholar
  26. 26.
    Fuentes-Andino, D., Beven, K., Halldin, S., Xu, C. Y., Reynolds, J. E., & di Baldassarre, G. (2017). Reproducing an extreme flood with uncertain post-event information. Hydrology and Earth System Sciences, 21, 3597–3618. Scholar
  27. 27.
    Gall, M., Boruff, B. J., & Cutter, S. L. (2007). Assessing flood hazard zones in the absence of digital floodplain maps: Comparison of alternative approaches. Natural Hazards Review, 8, 1–12. Scholar
  28. 28.
    Gichamo, T. Z., Popescu, I., Jonoski, A., & Solomatine, D. (2012). River cross-section extraction from the ASTER global DEM for flood modeling. Environmental Modelling and Software, 31, 37–46. Scholar
  29. 29.
    GOK. (1997). Economic review. Trivandrum.Google Scholar
  30. 30.
    Hesselink, A. W., Stelling, G. S., Kwadijk, J. C. J., & Middelkoop, H. (2003). Inundation of a Dutch river polder, sensitivity analysis of a physically based inundation model using historic data. Water Resources Research, 39.
  31. 31.
    Horritt, M. S. (2000). Calibration of a two-dimensional finite element flood flow model using satellite radar imagery. Water Resources Research, 36, 3279–3291. Scholar
  32. 32.
    Horritt, M. S., & Bates, P. D. (2001). Predicting floodplain inundation: Raster-based modelling versus the finite-element approach. Hydrological Processes, 15, 825–842. Scholar
  33. 33.
    Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 268, 87–99. Scholar
  34. 34.
    Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B, 52, 105–124.Google Scholar
  35. 35.
    Hosking, J. R. M. (1991). Approximations for use in constructing L-moment ratio diagrams. New York: IBM Research Division, T.J., Watson Research Center, Yorktown Heights.Google Scholar
  36. 36.
    Hosking, J. R. M., & Wallis, J. R. (1993). Some statistics useful in regional frequency analysis. Water Resources Research, 29, 271–281. Scholar
  37. 37.
    Hosking, J. R. M., & Wallis, J. R. (1997). Regional frequency analysis—An approach based on L-moments. New York: Cambridge University Press.CrossRefGoogle Scholar
  38. 38.
    Hydrologic Engineering Center. (2002). HEC-RAS river analysis system. User’s manual, Version 3.1, U.S. Army Corps of Engineers, Davis, California.Google Scholar
  39. 39.
    Islam, M. M., & Sado, K. (2000a). Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system. Hydrological Processes, 14, 605–620.<605::AID-HYP957>3.0.CO;2-L.CrossRefGoogle Scholar
  40. 40.
    Islam, M. M., & Sado, K. (2000b). Development of flood hazard maps of Bangladesh using NOAA-AVHRR images with GIS. Hydrological Sciences Journal, 45, 337–355. Scholar
  41. 41.
    IWRS. (2001). Theme paper on management of floods and droughts. Roorkee, India: Indian Water Resources Society.Google Scholar
  42. 42.
    Jena, P. P., Panigrahi, B., & Chatterjee, C. (2016). Assessment of Cartosat-1 DEM for modeling floods in data scarce regions. Water Resources Management, 30, 1293–1309. Scholar
  43. 43.
    Jingyi, Z., & Hall, M. J. (2004). Regional flood frequency analysis for the Gan-Ming River basin in China. Journal of Hydrology, 296, 98–117. Scholar
  44. 44.
    Komi, K., Neal, J., Trigg, M. A., & Diekkrüger, B. (2017). Modelling of flood hazard extent in data sparse areas: A case study of the Oti River basin, West Africa. Journal of Hydrology: Regional Studies, 10, 122–132. Scholar
  45. 45.
    Kumar, R., & Chatterjee, C. (2005). Regional flood frequency analysis using L-moments for North Brahmaputra region of India. Journal of Hydrologic Engineering, 10, 1–7. Scholar
  46. 46.
    Kumar, R., & Chatterjee, C. (2011). Development of regional flood frequency relationships for gauged and ungauged catchments using L-moments. In In extremis (pp. 105–127). Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
  47. 47.
    Kumar, R., Chatterjee, C., Kumar, S., Lohani, A. K., & Singh, R. D. (2003a). Development of regional flood frequency relationships using L-moments for Middle Ganga Plains Subzone 1(f) of India. Water Resources Management, 17, 243–257. Scholar
  48. 48.
    Kumar, R., Chatterjee, C., & Kumar, S. (2003b). Regional flood formulas using L-moments for small watersheds of sone subzone of India. Applied Engineering in Agriculture, 19, 47. Scholar
  49. 49.
    Kumar, R., Goel, N. K., Chatterjee, C., & Nayak, P. C. (2015). Regional flood frequency analysis using soft computing techniques. Water Resources Management, 29, 1965–1978. Scholar
  50. 50.
    Mani, P., Chatterjee, C., & Kumar, R. (2014). Flood hazard assessment with multiparameter approach derived from coupled 1D and 2D hydrodynamic flow model. Natural Hazards, 70, 1553–1574. Scholar
  51. 51.
    Md Ali, A., Solomatine, D. P., & Di Baldassarre, G. (2015). Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods. Hydrology and Earth System Sciences, 19, 631–643. Scholar
  52. 52.
    Mohapatra, P. K., & Singh, R. D. (2003). Flood management in India. Natural Hazards, 28, 131–143. Scholar
  53. 53.
    National Disaster Management Guidelines: Management of Floods. (2008). National Disaster Management Authority, Government of India, January 2008, New Delhi.Google Scholar
  54. 54.
    National Remote Sensing Agency. (2003). IRS-P6 data user’s handbook. Report No. IRS-P6/NRSA/NDC/HB-10/03, edition: Oct. 1, 2003, URL: Accessed 25 Mar 2019.
  55. 55.
    National Water Policy. (2002). Ministry of Water Resources. Government of India.Google Scholar
  56. 56.
    Noto, L. V., & La Loggia, G. (2009). Use of L-moments approach for regional flood frequency analysis in Sicily, Italy. Water Resources Management, 23, 2207–2229. Scholar
  57. 57.
    Patro, S., Chatterjee, C., Mohanty, S., Singh, R., & Raghuwanshi, N. S. (2009a). Flood inundation modeling using MIKE FLOOD and remote sensing data. Journal of the Indian Society of Remote Sensing, 37, 107–118. Scholar
  58. 58.
    Patro, S., Chatterjee, C., Singh, R., & Raghuwanshi, N. S. (2009b). Hydrodynamic modelling of a large flood-prone river system in India with limited data. Hydrological Processes, 23, 2774–2791. Scholar
  59. 59.
    Pham, H. T., Marshall, L., Johnson, F., & Sharma, A. (2018). A method for combining SRTM DEM and ASTER GDEM2 to improve topography estimation in regions without reference data. Remote Sensing of Environment, 210, 229–241. Scholar
  60. 60.
    Pilgrim, D. H., & Cordery, I. (1992). Flood runoff. In Handbook of Hydrology. New York: McGraw-Hill Book Company.Google Scholar
  61. 61.
    Rao, A. R., & Hamed, K. H. (2000). Flood frequency analysis. Washington, DC: CRC Press.Google Scholar
  62. 62.
    Rungo, M., & Olesen, K. W. (2003) Combined 1- and 2-dimensional flood modelling. In: 4th Iranian Hydraulic Conference, 21–23 Oct. Shiraz, IranGoogle Scholar
  63. 63.
    Saf, B. (2010). Assessment of the effects of discordant sites on regional flood frequency analysis. Journal of Hydrology, 380, 362–375. Scholar
  64. 64.
    Samantaray, D., Chatterjee, C., Singh, R., Gupta, P. K., & Panigrahy, S. (2015). Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India. Natural Hazards, 76, 347–372. Scholar
  65. 65.
    Sanyal, J., & Lu, X. X. (2005). Remote sensing and GIS-based flood vulnerability assessment of human settlements: A case study of Gangetic West Bengal, India. Hydrological Processes, 19, 3699–3716. Scholar
  66. 66.
    Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., & Freer, J. E. (2015). Water Resources Research. Water Resources Research, 51, 7358–7381.CrossRefGoogle Scholar
  67. 67.
    Scawthorn, C., Blais, N., Seligson, H., Tate, E., Mifflin, E., Thomas, W., Murphy, J., & Jones, C. (2006). HAZUS-MH flood loss estimation methodology. I: Overview and flood hazard characterization. Natural Hazards Review, 7, 60–71. Scholar
  68. 68.
    Schober, B., Hauer, C., & Habersack, H. (2015). A novel assessment of the role of Danube floodplains in flood hazard reduction (FEM method). Natural Hazards, 75, 33–50. Scholar
  69. 69.
    Sen, D. J., & Garg, N. K. (1998). Efficient solution technique for dendritic channel networks using FEM. Journal of Hydraulic Engineering, 124, 831–839. Scholar
  70. 70.
    Sheng, Y., Su, Y., & Xiao, Q. (1998). Challenging the cloud-contamination problem in flood monitoring with NOAA/AVHRR imagery. Photogramm Eng Remote Sensing, 64, 191–198.Google Scholar
  71. 71.
    Shrestha, M. S., Heggen, R., & Thapa, K. P., et al. (2004). Flood risk and vulnerability mapping using GIS: A Nepal case study. In: Proceedings of the Second Asia Pacific Association of Hydrology and Water Resources (APHW) conference: 5-8 July 2004. Singapore, pp 180–190.Google Scholar
  72. 72.
    Singh, V. P., & Yadav, R. P. (2003). Environmental pollution. New Delhi: Allied Publishers Pvt Ltd.Google Scholar
  73. 73.
    Stedinger, J. R., Vogel, R. M., & Foufoula-Georgiou, E. (1993). Frequency analysis of extreme events. In Handbook of Hydrology. New York: McGraw-Hill Book Company.Google Scholar
  74. 74.
    Tate, E. C., Maidment, D. R., Olivera, F., & Anderson, D. J. (2002). Creating a terrain model for floodplain mapping. Journal of Hydrologic Engineering, 7, 100–108. Scholar
  75. 75.
    Tingsanchali, T., & Karim, M. F. (2005). Flood hazard and risk analysis in the southwest region of Bangladesh. Hydrological Processes, 19, 2055–2069. Scholar
  76. 76.
    Vorogushyn, S., Merz, B., Lindenschmidt, K.-E., & Apel, H. (2010). A new methodology for flood hazard assessment considering dike breaches. Water Resources Research, 46.
  77. 77.
    Werner, M. G. F. (2001). Impact of grid size in GIS based flood extent mapping using a 1D flow model. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 517–522. Scholar
  78. 78.
    Werner, M. G. F, Hunter, M. N, Bates, P. D. (2005). Identifiability of distributed floodplain roughness values in flood extent estimation. Journal of Hydrology, 314, 139–157Google Scholar
  79. 79.
    Wilson, M., Bates, P., Alsdorf, D., Forsberg, B., Horritt, M., Melack, J., Frappart, F., & Famiglietti, J. (2007). Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophysical Research Letters, 34.
  80. 80.
    Xia, J., Falconer, R. A., Lin, B., & Tan, G. (2011). Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environmental Modelling and Software, 26, 987–998. Scholar
  81. 81.
    Yan, K., Tarpanelli, A., Balint, G., Moramarco, T., & Baldassarre, G. D. (2015). Exploring the potential of SRTM topography and radar altimetry to support flood propagation modeling: Danube case study. Journal of Hydrologic Engineering, 20, 04014048. Scholar
  82. 82.
    Yang, C., Zhou, C., Wan, Q. (1999). Deciding the flood extent with Radarsat SAR data and image fusion. In: 20th Asian Conference of Remote Sensing. Hong KongGoogle Scholar
  83. 83.
    Zafirakou-Koulouris, A., Vogel, R. M., Craig, S. M., & Habermeier, J. (1998). L moment diagrams for censored observations. Water Resources Research, 34, 1241–1249. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Agricultural Engineering DepartmentCollege of AgricultureThiruvananthapuramIndia
  2. 2.Department of Agricultural and Food EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  3. 3.National Institute of HydrologyRoorkeeIndia
  4. 4.Maulana Azad National Institute of TechnologyBhopalIndia

Personalised recommendations