Annual and Seasonal Rainfall Trends in an Equatorial Tropical River Basin in Malaysian Borneo


Annual and seasonal rainfall trends in the Limbang River Basin (LRB), located in the equatorial tropics of Malaysian Borneo, have been characterised through Mann-Kendall and Spearman’s Rho non-parametric tests. Rainfall from 13 rain gauge stations in the LRB for the period 1948–2016 was examined in the present study. Basic statistical analysis of rainfall in the region indicates normal distribution, low missing percentage and homogenous characteristics of precipitation. Annual and seasonal rainfall in the LRB shows spatial variation while considering different rain gauge stations. In annual rainfall, eight stations showed a decreasing trend and five stations showed an increasing trend. Rain gauge stations which showed a statistically significant increase in annual rainfall were Limbang DID (2.77 and 2.85 mm/year) and Long Napir (3.65 and 3.77 mm/year). In recognising the two annual monsoon seasons in this area, a significant increase in rainfall was noticed in Long Napir (2.79 and 2.88 mm/year) during the Southwest monsoon (SWM) period. During the Northeast monsoon (NEM), along with Long Napir (3.90 and 3.95 mm/year), Limbang DID (2.86 and 3.02 mm/year), Pandaruan (1.82 and 1.87 mm/year) and Medamit Nanga (1.93 and 2.00 mm/year) also showed a significant increase in rainfall. At the same time, a distinct trend was noticed in rainfall amounts during the inter-monsoon (IM) periods. During the first inter-monsoon month (April), seven rain gauge stations showed an increasing trend in rainfall, whereas in the second inter-monsoon month (October), nine stations showed a decreasing rainfall trend. In April, Long Napir (1.86 and 1.95 mm/year) indicated a significant increasing trend, whereas in the month of October, the rain gauge station at Ukong showed a significant decreasing trend (− 2.45 and − 2.37 mm/year). Though minor spatial changes in trend characteristics were observed among the rain gauge stations, the LRB as a whole showed a consistent increasing (significant and non-significant) trend in annual and seasonal rainfall.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Abaje, I. B., Ishaya, S., & Usman, S. U. (2010). An analysis of rainfall trends in Kafanchan, Kaduna State, Nigeria. Research Journal of Environmental and Earth Sciences, 2(2), 89–96.

    Google Scholar 

  2. 2.

    Ahmad, I., Tang, D., Wang, T., Wang, M., & Wagan, B. (2015). Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Advances in Meteorology.

  3. 3.

    Allan, R. P., Soden, B. J., John, V. O., Ingram, W., & Good, P. (2010). Current changes in tropical precipitation. Environmental Research Letters, 5(2), 025205.

    Google Scholar 

  4. 4.

    Arnell, N. W., & Reynard, N. S. (1996). The effects of climate change due to global warming on river flows in Great Britain. Journal of Hydrology, 183(3–4), 397–424.

    Google Scholar 

  5. 5.

    Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41.

    Google Scholar 

  6. 6.

    Benestad, R. E. (2013). Association between trends in daily rainfall percentiles and the global mean temperature. Journal of Geophysical Research: Atmospheres, 118(19), 10–802.

    Google Scholar 

  7. 7.

    Brown, C. E. (1998). Coefficient of variation. In Applied multivariate statistics in geohydrology and related sciences (pp. 155–157). Berlin Heidelberg: Springer.

    Google Scholar 

  8. 8.

    Caldera, H. P. G. M., Piyathisse, V. R. P. C., & Nandalal, K. D. W. (2016). A comparison of methods of estimating missing daily rainfall data. Engineer: Journal of the Institution of Engineers, Sri Lanka, 49(4), 1.

    Google Scholar 

  9. 9.

    Chattopadhyay, S., & Edwards, D. R. (2016). Long-term trend analysis of precipitation and air temperature for Kentucky, United States. Climate, 4(1), 10.

    Google Scholar 

  10. 10.

    Crisci, A., Gozzini, B., Meneguzzo, F., Pagliara, S., & Maracchi, G. (2002). Extreme rainfall in a changing climate: Regional analysis and hydrological implications in Tuscany. Hydrological Processes, 16(6), 1261–1274.

    Google Scholar 

  11. 11.

    Da Silva, R. M., Santos, C. A., Moreira, M., Corte-Real, J., Silva, V. C., & Medeiros, I. C. (2015). Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards, 77(2), 1205–1221.

    Google Scholar 

  12. 12.

    Detzel, D. H. M., & Mine, M. R. M. (2014). Trends in hydrological series: methods and application. In 11th International Conference on Hydroscience & Engineering, Hamburg, Germany. Lehfeldt & Kopmann (eds) - © 2014 Bundesanstaltfür Wasserbau ISBN 978–3–939230-32-8.

  13. 13.

    Devkota, R. P. (2014). Climate change: Trends and people’s perception in Nepal. Journal of Environmental Protection, 5(04), 255–265.

    Google Scholar 

  14. 14.

    Dindang, A., Taat, A., Beng, P. E., Alwi, A. M., Mandai, A., et al. (2013). Statistical and trend analysis of rainfall data in Kuching, Sarawak from 1968–2010. Malaysian Meteorological Department. Ministry of Science, Technology and Innovation. pp14.

  15. 15.

    Diop, L., Bodian, A., & Diallo, D. (2016). Spatiotemporal trend analysis of the mean annual rainfall in Senegal. European Scientific Journal, ESJ, 12(12), 231–245.

    Google Scholar 

  16. 16.

    Eshetu, G., Johansson, T., & Garedew, W. (2016). Rainfall trend and variability analysis in Setema-Gatira area of Jimma, southwestern Ethiopia. African Journal of Agricultural Research, 11(32), 3037–3045.

    Google Scholar 

  17. 17.

    Feizi, V., Mollashahi, M., Farajzadeh, M., & Azizi, G. (2014). Spatial and temporal trend analysis of temperature and precipitation in Iran. Ecopersia, 2(4), 727–742.

    Google Scholar 

  18. 18.

    Francis, J., & Mahongo, S. B. (2012). Analysis of rainfall variations and trends in coastal Tanzania. Western Indian Ocean Journal of Marine Science, 11(2), 121–133.

    Google Scholar 

  19. 19.

    Frich, P., Alexander, L. V., Della-Marta, P. M., Gleason, B., Haylock, M., Tank, A. K., & Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19(3), 193–212.

    Google Scholar 

  20. 20.

    Gavrilov, M. B., Marković, S. B., Janc, N., Nikolić, M., Valjarević, A., Komac, B., Zorn, M., Punišić, M., & Bačević, N. (2018). Assessing average annual air temperature trends using the Mann–Kendall test in Kosovo. Acta Geographica Slovenica, 58(1).

  21. 21.

    Gebremicael, T. G., Mohamed, Y. A., & Hagos, E. Y. (2017). Temporal and spatial changes of rainfall and streamflow in the upper Tekezē–Atbara river basin, Ethiopia. Hydrology and Earth System Sciences, 21(4), 2127–2142.

    Google Scholar 

  22. 22.

    Groeneveld, R. A., & Meeden, G. (1984). Measuring skewness and kurtosis. The Statistician, 33, 391–399.

    Google Scholar 

  23. 23.

    Hajani, E., Rahman, A., & Haddad, K. (2014). Trend analysis for extreme rainfall events in New South Wales, Australia. International journal of environmental, chemical, ecological, geological and geophysical. Engineering, 8(12), 834–839.

    Google Scholar 

  24. 24.

    Hasan, Z., Akhter, S., & Kabir, A. (2014). Analysis of rainfall trends in the south-East Bangladesh. Journal of Environment, 3(3), 51–56.

    Google Scholar 

  25. 25.

    Hiung, L. K., Cheng, N. H., & Farn, T. G. (1996). Flood in Sarawak and DID’s involvement in flood mitigation. Technical Report pp40.

  26. 26.

    Hua, T. M., Hui, R. C. Y., & Husen, R. (2013). Trend of Rainfall in Sarawak from 1999 to 2008. Proceeding of the International Conference on Social Science Research, ICSSR 2013), Penang, MALAYSIA. Organized by

  27. 27.

    Hung, N. Q., Babel, M. S., Weesakul, S., & Tripathi, N. K. (2009). An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrology and Earth System Sciences, 13(8), 1413–1425.

    Google Scholar 

  28. 28.

    Issahaku, A. R., Campion, B. B., & Edziyie, R. (2016). Rainfall and temperature changes and variability in the upper east region of Ghana. Earth and Space Science, 3(8), 284–294.

    Google Scholar 

  29. 29.

    Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Science, 37–49.

  30. 30.

    Karabulut, M., Gürbüz, M., & Korkmaz, H. (2008). Precipitation and temperature trend analyses in Samsun. Journal International Environmental Application & Science, 3(5), 399–408.

    Google Scholar 

  31. 31.

    Kendall, M. G. (1948). Rank correlation methods. London: Griffin.

    Google Scholar 

  32. 32.

    Kumar, V., Jain, S. K., & Singh, Y. (2010). Analysis of long-term rainfall trends in India. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 55(4), 484–496.

    Google Scholar 

  33. 33.

    Lau, K. M., & Wu, H. T. (2007). Detecting trends in tropical rainfall characteristics, 1979–2003. International Journal of Climatology, 27(8), 979–988.

    Google Scholar 

  34. 34.

    Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13, 245–259.

    Google Scholar 

  35. 35.

    Meshram, S. G., Singh, V. P., & Meshram, C. (2017). Long-term trend and variability of precipitation in Chhattisgarh state, India. Theoretical and Applied Climatology, 129(3–4), 729–744.

    Google Scholar 

  36. 36.

    Milanovic, M., Gocic, M. & Trajkovic, S. (2015). Analysis of trend in annual precipitation on the territory of Serbia. 41th anniversary faculty of civil engineering Subotica. International conference contemporary achievements in civil engineering 24. April 2015. Subotica, Serbia. pp. 535–541.

  37. 37.

    Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84(4), 407–412.

    CAS  Google Scholar 

  38. 38.

    NGAH, M., Reid, I., & Hashim, M. (2012). Rainfall trend analysis using 50 years historical data in newly developed catchment in peninsular Malaysia. Middle-East Journal of Scientific Research, 11(5), 668–673.

    Google Scholar 

  39. 39.

    Nyatuame, M., Owusu-Gyimah, V., & Ampiaw, F. (2014). Statistical analysis of rainfall trend for Volta Region in Ghana. International Journal of Atmospheric Sciences.

  40. 40.

    Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20(9), 2011–2026.

    Google Scholar 

  41. 41.

    Pranuthi, G., Dubey, S. K., Tripathi, S. K., & Chandniha, S. K. (2014). Trend and change point detection of precipitation in urbanizing Districts of Uttarakhand in India. Indian Journal of Science and Technology, 7(10), 1573–1582.

    Google Scholar 

  42. 42.

    Rahman, M. A., Yunsheng, L., & Sultana, N. (2017). Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall, Spearman’s rho tests and ARIMA model. Meteorology and Atmospheric Physics, 129(4), 409–424.

    Google Scholar 

  43. 43.

    Rathore, L. S., Attri, S. D., & Jaswal, A. K. (2013). State level climate change trends in India. Chapter, 3, 11. India Meteorological Department, Ministry of Earth Sciences, Government of India.

  44. 44.

    Reza, Y. M., Javad, K. D., Mohammad, M., & Ashish, S. (2011). Trend detection of the rainfall and air temperature data in the Zayandehrud basin. Journal of Applied Sciences, 11(12), 2125–2134.

    Google Scholar 

  45. 45.

    Salma, S., Shah, M. A., & Rehman, S. (2012). Rainfall trends in different climate zones of Pakistan. Pakistan Journal of Meteorology, 9(17).

  46. 46.

    Sayemuzzaman, M., & Jha, M. K. (2014). Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmospheric Research, 137, 183–194.

    Google Scholar 

  47. 47.

    Shadmani, M., Marofi, S., & Roknian, M. (2012). Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resources Management, 26(1), 211–224.

    Google Scholar 

  48. 48.

    Shanmugam, R., & Chattamvelli, R. (2015). Statistics for scientists and engineers. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  49. 49.

    Tabari, H., Abghari, H., & Hosseinzadeh Talaee, P. (2012). Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrological Processes, 26(22), 3351–3361.

    Google Scholar 

  50. 50.

    Thenmozhi, M., & Kottiswaran, S. V. (2016). Analysis of rainfall trend using Mann– Kendall test and the Sen’s slope estimator in Udumalpet of Tirupur district in Tamilnadu. International Journal of Agricultural Science and Research, 6(2), 131–138.

    Google Scholar 

  51. 51.

    Tie, S. T. (2010). Water quality assessment of Trusan and Limbang basin, Sarawak. Unpublished Doctoral dissertation, Universiti Malaysia Sarawak.

  52. 52.

    Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138.

    Google Scholar 

  53. 53.

    Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., et al. (2007). Observations: Surface and atmospheric climate change. Chapter 3. Climate Change, 235–336.

  54. 54.

    Udo-Inyang, U. C., & Edem, I. D. (2012). A changes in precipitation analysis of rainfall trends in Akwa Ibom State, Nigeria. Journal of Environmental and Earth Science, 2(8), 60–71.

    Google Scholar 

  55. 55.

    Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.

    CAS  Google Scholar 

  56. 56.

    Weber, E. U., Shafir, S., & Blais, A. R. (2004). Predicting risk sensitivity in humans and lower animals: risk as variance or coefficient of variation. Psychological Review, 111(2), 430–445.

    Google Scholar 

  57. 57.

    Xia, Y., Fabian, P., Stohl, A., & Winterhalter, M. (1999). Forest climatology: estimation of missing values for Bavaria, Germany. Agricultural and Forest Meteorology, 96(1–3), 131–144.

    Google Scholar 

  58. 58.

    Yilmaz, A. G., Hossain, I., & Perera, B. J. C. (2014). Effect of climate change and variability on extreme rainfall intensity–frequency–duration relationships: a case study of Melbourne. Hydrology and Earth System Sciences, 18(10), 4065–4076.

    Google Scholar 

  59. 59.

    Yue, S., & Pilon, P. (2004). A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection. Hydrological Sciences Journal, 49(1), 21–37.

    Google Scholar 

  60. 60.

    Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1–4), 254–271.

    Google Scholar 

  61. 61.

    Yusof, F., & Hui-Mean, F. (2012). Use of statistical distribution for drought analysis. Applied Mathematical Sciences, 6(21), 1031–1051.

    Google Scholar 

  62. 62.

    Zafor, M. A., Farzana, S. Z., Chakraborty, A., & Rahman, A. (2006). Analysis of rainfall trends and variability at Sylhet region in Bangladesh. ARPN Journal of Engineering and Applied Sciences, 11(11), 6836–6846.

    Google Scholar 

  63. 63.

    Zhao, W., Yu, X., Ma, H., Zhu, Q., Zhang, Y., Qin, W., Ai, N., & Wang, Y. (2015). Analysis of precipitation characteristics during 1957-2012 in the semi-arid Loess Plateau, China. PLoS One, 10(11), e0141662.

    Google Scholar 

Download references


Authors are also thankful to the Editor in Chief, anonymous reviewer, expert referee and advisory editor for their critical reviews, constructive comments and suggestions, which significantly improved the quality of the manuscript.


The first author gratefully acknowledges the Curtin University Malaysia for providing financial support (CMPRS) and research facility during the study and the Department of Irrigation and Drainage (DID), Sarawak, Malaysia, for providing rainfall data.

Author information



Corresponding author

Correspondence to M. V. Ninu Krishnan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ninu Krishnan, M.V., Prasanna, M.V. & Vijith, H. Annual and Seasonal Rainfall Trends in an Equatorial Tropical River Basin in Malaysian Borneo. Environ Model Assess 24, 569–584 (2019).

Download citation


  • Rainfall trend
  • Mann-Kendall
  • Spearman’s Rho test
  • Equatorial tropics
  • Limbang River Basin