Skip to main content

Advertisement

Log in

Mathematics for Scenarios of Biodiversity and Ecosystem Services

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Balancing biodiversity conservation with food security and the preservation of a broader set of ecosystem services is among the greatest challenges of the century. The creation of the International Panel for Biodiversity and Ecosystem Services (IPBES), at the interface between decision support and scientific knowledge, is clearly in line with this ecological-economic perspective. IPBES particularly puts forward the development of model-based scenarios making sense economically and ecologically and promoting sustainability. The present paper provides generic modeling methods and tools to address such challenges. The paper argues that the framework of controlled dynamic systems under uncertainty together with ecoviability metrics are especially well suited. Such a modeling framework indeed makes it possible to simultaneously account for complex dynamics, indirect or indirect drivers, uncertainties along with multiple sustainability objectives. These general ideas are exemplified with scenarios relating to two applied fields: (i) fisheries and marine biodiversity and (ii) land-use and avifauna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Source: Cissé et al. [12]

Fig. 3

Source: Doyen et al. [20]

Fig. 4

Source Mouysset et al. [46]

Similar content being viewed by others

Notes

  1. https://www.ipbes.net/

  2. International Council for the Exploration of the Sea http://www.ices.dk/Pages/default.aspx

  3. Food and Agriculture Organization http://www.fao.org/home/en/

  4. Convention on Biological Diversity https://www.cbd.int/history/

  5. International Union for Conservation of Nature https://www.iucn.org/

  6. The framework is generic enough to potentially account for Bayesian learning as in the Kalman filter for instance. To achieve this, we would need to consider an augmented dynamic system with the estimation of the states (or the parameters) as additional states evolving according to an iterative prediction-correction process.

  7. Without loss of generality, a disservice, can be represented by its negative value, so that the direction of the inequality in Eq. 7 holds.

  8. The model does not integrate inter-specific competition or migration here.

  9. Other density-dependent population dynamics could have been used such as logistic, Ricker, or Gomperz models.

References

  1. Aronsson, T., & Lofgren, K.-G. (1998). Green accounting in imperfect market economies. Environmental and Resource Economics, 11(3-4), 273–287.

    Article  Google Scholar 

  2. Arrow, K.J., Dasgupta, P., Maler, K.-G. (2003). Evaluating projects and assessing sustainable development in imperfect economies. Environmental and Resource Economics, 26(4), 647–685.

    Article  Google Scholar 

  3. Aubin, J.-P. (1990). A survey of viability theory. SIAM Journal on Control and Optimization, 28(4), 749–788.

    Article  Google Scholar 

  4. Baumgartner, S., & Quaas, M.F. (2009). Ecological-economic viability as a criterion of strong sustainability under uncertainty. Ecological Economics, 68(7), 2008–2020.

    Article  Google Scholar 

  5. Béné, C., Doyen, L., Gabay, D. (2001). A viability analysis for a bio-economic model. Ecological Economics, 36, 385–396.

    Article  Google Scholar 

  6. Béné, C., Godfrey-Wood, R., Newsham, A., Davies, M. (2012). Resilience: new Utopia or new tyranny? – reflection about the potentials and limits of the concept of resilience in relation to vulnerability reduction programmes. IDS working Paper 405. Brighton: Institute of Development Studies (p. 61).

  7. Bertsekas, D.P. (2017). Dynamic programming and optimal control, 4th edn (Vol. I).

  8. Börjeson, L., Höjer, M., Dreborg, K.-H., Ekvall, T., Finnveden, G. (2006). Scenario types and techniques: towards a users guide. Futures, 38(7), 723–739.

    Article  Google Scholar 

  9. Butchart, S., Walpole, M., Collen, B., van Strien, A., Scharlemann, J., Almond, R., Baillie, J., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, J., Chenery, A.M., Csirke, J., Davidson, N.C., Dentener, F., Foster, M., Galli, A., Galloway, J.N., Genovesi, P., Gregory, R.D., Hockings, M., Kapos, V., Lamarque, J.-F., Leverington, F., Loh, J., McGeoch, M.A., McRae, L., Minasyan, A., Morcillo, M.H., Oldfield, T.E.E., Pauly, D., Quader, S., Revenga, C., Sauer, J.R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S.N., Symes, A., Tierney, M., Tyrrell, T.D., Vié, J.-C., Watson, R. (2010). Global biodiversity: indicators of recent declines. Science, 328(5982), 1164–1168.

    Article  CAS  Google Scholar 

  10. Chichilnisky, G. (1996). An axiomatic approach to sustainable development. Social Choice and Welfare, 13, 257–321.

    Google Scholar 

  11. Christ, & et al. (2017). The interaction of human population, food production, and biodiversity protection. Science, 356, 260–264.

    Article  Google Scholar 

  12. Cissé, A., Blanchard, F., Doyen, L., Pereau, J.-C. (2015). Ecoviability for small-scale fisheries in the context of food security constraints. Ecological Economics, 119, 39–52.

    Article  Google Scholar 

  13. Clark, C.W. (1990). Mathematical bioeconomics, 2nd edn. New York: Wiley.

    Google Scholar 

  14. Clark, W.C., & Mangel, M. (2000). Dynamic state variable models in ecology, methods and applications. Oxford Series in Ecology and Evolution.

  15. Conrad, J., & Clark, C.W. (1987). Natural resource economics: notes and problems. Cambridge University Press.

  16. Cury, P., Mullon, C., Garcia, S., Shannon, L.J. (2005). Viability theory for an ecosystem approach to fisheries. ICES Journal of Marine Science, 62(3), 577–584.

    Article  Google Scholar 

  17. DeLara, M., & Doyen, L. (2008). Sustainable management of natural resources: mathematical models and methods. Springer.

  18. De Lara, M., Ocana Anaya, E., Oliveros-Ramos, R., Tam, J. (2012). Ecosystem viable yields. Environmental Modeling & Assessment, 17(6), 565–575.

    Article  Google Scholar 

  19. Donald, P.F., Sanderson, F.J., van, I.J., Bommel, F.P., Burfield, J. (2006). Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990-2000. Agriculture Ecosystems and Environment, 116(3-4), 189–196.

    Article  Google Scholar 

  20. Doyen L., Béné, C., Bertignac, M., Blanchard, F., Cissé, A.-A., Dichmont, C., Gourguet, S., Guyader, O., Hardy, P.-Y., Jennings, S., Little, R., Macher, C., Mills, D., Noussair, A., Pereau, J-C., Pascoe, S., Sanz, N., Schwarz, A.-M., Smith, T., Thébaud, O. (2017). Ecoviability for ecosystem based fisheries management, fish and fisheries. Online https://onlinelibrary.wiley.com/doi/abs/10.1111/faf.12224.

  21. Doyen, L., & DeLara, M. (2010). Stochastic viability and dynamic programming. Systems and Control Letters, 59(10), 629–634.

    Article  Google Scholar 

  22. Doyen, L., & Martinet, V. (2012). Maximin, viability and sustainability. Journal of Economic Dynamics and Control, 36(9), 1414–1430.

    Article  Google Scholar 

  23. Doyen, L., Cissé, A., Gourguet, S., Mouysset, L., Hardy, P.-Y., Béné, C., Blanchard, F., Jiguet, F., Pereau, J. -C., Thébaud, O. (2013). Ecological-economic modeling for the sustainable management of biodiversity. Computational Management Science, 10, 353–364.

    Article  Google Scholar 

  24. Eisenack, K., Scheffran, J., Kropp, J.P. (2006). Viability analysis of management frameworks for fisheries. Environmental Modeling Assessment, 11, 69–79.

    Article  Google Scholar 

  25. FAO. (2013). FAO Statistical Yearbook 2013. FAO, Rome.

  26. Fleurbaey, M. (2015). On sustainability and social welfare. Journal of Environmental Economics and Management, 71, 34–53.

    Article  Google Scholar 

  27. Grafton, R.Q., & Little, L.R. (2017). Risks, resilience, and natural resource management: lessons from selected findings. Natural Resource Modeling, 30, 91–111. https://doi.org/10.1111/nrm.12104.

    Article  Google Scholar 

  28. Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  Google Scholar 

  29. Gourguet, S., Thébaud, O., Jennings, S., Little, L.R., Dichmont, C.M., Pascoe, S., Deng, R.A., Doyen, L. (2015). The cost of co-viability in the Australian Northern prawn fishery. Environmental Modeling and Assessment, 1–19.

  30. Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12(10), e0185809.

    Article  Google Scholar 

  31. Hardy, P.-Y., Doyen, L., Béné, C., Mills, D. (2016). Viability and resilience of small-scale fisheries through cooperative arrangements. Environmental and Development Economics, 21(6), 713–741.

    Article  Google Scholar 

  32. Heal, G. (1998). Valuing the future economic theory and sustainability. New York: Columbia University Press.

    Google Scholar 

  33. Helm, D., & Hepburn, C. (2013). Nature in the balance: the economics of biodiversity. Oxford Scholarship Online, https://doi.org/10.1093/acprof:oso/9780199676880.001.0001.

  34. Howarth, R.B., & Norgaard, R.B. (1995). Intergenerational choices under global environmental change. In Bromley, D. (Ed.) The handbook of environmental economics (pp. 112–138): Blackwell.

  35. IPBES. (2016). Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. In Ferrier, S., Ninan, K.N., Leadley, P., Alkemade, R., Acosta, L.A., Akçakaya, H.R., Brotons, L., Cheung, W., Christensen, V., Harhash, K.A., Kabubo-Mariara, J., Lundquist, C., Obersteiner, M., Pereira, H., Peterson, G., Pichs-Madruga, R., Ravindranath, N.H., Rondinini, C., Wintle, B. (Eds.) Secretariat of the intergovernmental science-policy platform on biodiversity and ecosystem services. 32 pages. Bonn .

  36. Kleijn, D., & et al. (2006). Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecology Letters, 9(3), 243–254.

    Article  CAS  Google Scholar 

  37. Krawczyk, J.A., Pharo, A., Serea, O.S., Sinclair, S. (2013). Computation of viability kernels: a case study of by-catch fisheries. Computational Management Science, 10(4), 365–396.

    Article  Google Scholar 

  38. Leadley, P., Pereira, H.M., Alkemade, R., Fernandez-Manjarrés, J.F., Proença, V., Scharlemann, J.P.W., Walpole, M.J. (2010). Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series n. 50, 132 pages.

  39. Mace, G.M., Norris, K., Fitter, A.H. (2012). Biodiversity and ecosystem services: a multilayered relationship. Trends in Ecology and Evolution., 27(1), 19–26.

    Article  Google Scholar 

  40. Maynou, F. (2014). Coviability analysis of Western Mediterranean fisheries under MSY scenarios for 2020. ICES Journal of Marine Science, 71(7), 1563–1571.

    Article  Google Scholar 

  41. Martin, S. (2004). The cost of restoration as a way of defining resilience: a viability approach applied to a model of lake eutrophication. Ecology and Society, 9, 2.

    Article  Google Scholar 

  42. Metrick, A., & Weitzman, M. (1998). Conflicts and choices in biodiversity preservation. Journal of Economic Perspectives, 12(3), 21–34.

    Article  Google Scholar 

  43. Millenium Ecosystem Assessment. (2005). Ecosystems and human well-being. Washington, DC: Island Press.

    Google Scholar 

  44. United Nations. (2012). Millennium development goals report 2012. United Nations, New York.

  45. Mouysset L., Doyen, L., Pereau, J.C., Jiguet, F. (2014). Benefits and costs of biodiversity in agricultural public policies. European Review of Agricultural Economics. On line.

  46. Mouysset, L., Doyen, L., Jiguet, F. (2014). Co-viability of farmland biodiversity and agriculture. Conservation Biology, 28(1), 187–201.

    Article  CAS  Google Scholar 

  47. Mouysset, L., Doyen, L., Allaire, G., Jiguet, F., Leger, F. (2011). Bio economic modeling for a sustainable management of biodiversity and agriculture. Ecological Economics, 70(4), 617–626.

    Article  Google Scholar 

  48. Pereau, J. -C., Doyen, L., Little, R., Thébaud, O. (2012). The triple bottom line: meeting ecological, economic and social goals with individual transferable quotas. Journal of Environmental Economics and Management, 63, 419–434.

    Article  Google Scholar 

  49. Plagànyi, É. (2007). Models for an ecosystem approach to fisheries (No 477). Food & Agriculture Organisation, Rome.

  50. Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin, F.S. III, Lambin, E., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H., Nykvist, B., De Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., Foley, J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14 (2), 32. http://www.ecologyandsociety.org/vol14/iss2/art32/.

    Article  Google Scholar 

  51. Sabatier, R., Doyen, L., Tichit, M. (2012). Action versus result-oriented schemes in a grassland agroecosystem: a dynamic modelling approach. PLOS One. On line.

  52. Sanchirico, J.N., Smith, M.D., Lipton, D.W. (2008). An empirical approach to ecosystem-based management. Ecological Economics, 64, 586–596.

    Article  Google Scholar 

  53. Schuhbauer, A., & Sumaila, U.R. (2016). Economic viability and small-scale fisheries — a review. Ecological Economics, 124, 69–75.

    Article  Google Scholar 

  54. Solow, R.M. (1974). Intergenerational equity and exhaustible resources. Review of Economic Studies, 41, 29–45. (Symposium).

    Article  Google Scholar 

  55. Weitzman, M.L. (2015). Nature in the balance: the economics of biodiversity. Journal of Economic Literature, 12, 52.

    Google Scholar 

Download references

Acknowledgments

The role of the research projects VOGUE, ECOPE (PIG CNRS), NAVIRE (Cluster of Excellence COTE, ANR-10-LABX-45), OYAMAR (FEDER), and ACROSS (ANR-14-CE03-0001) was also decisive. We are very grateful to Nicolas Sanz for his help in the editing of this paper.

Funding

This work has been carried out with the financial support of the Belmont Forum through the network SEAVIEW (ANR-14-JPF1-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Doyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyen, L. Mathematics for Scenarios of Biodiversity and Ecosystem Services. Environ Model Assess 23, 729–742 (2018). https://doi.org/10.1007/s10666-018-9632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-018-9632-4

Keywords

Navigation