Skip to main content

Advertisement

Log in

Three-dimensional Modelling of Radionuclides Dispersion in a Marine Environment with Application to the Fukushima Dai-ichi Case

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this work, we present the implementation, verification and validation of a three-dimensional model able to reproduce the propagation of \(^{137}C_{s}\) radionuclide in coastal waters and its interaction with suspended sediments, in the framework of the open-source TELEMAC-MASCARET modelling system. The validation of the model was realized by comparing numerical results with field measurements of radionuclides concentration in the Japan Sea nearby the Fukushima Dai-ichi nuclear power plant (NPP). The developed model uses as external forcing the data available immediately after or during the accident, as, e.g. weather conditions (wind, pressure, temperature) and/or the harmonic components of tides. In contrast with previous models implemented in the study area, the model presented here is limited to the coastal area near Fukushima and refined in the coastal area close to the NPP. Numerical results show that the model is able to reproduce the propagation and diffusion of the released \(^{137}C_{s}\) in the vicinity of the Fukushima Dai-ichi NPP. Consequently, we show that the numerical results obtained with a small-scale model with a simple forcing are consistent, at a coastal scale, with models which employed a general circulation model based on data assimilation techniques or variation method for hydrodynamics. Therefore, this model could be employed in an emergency situation, when the dissolved radioactivity is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Meteorological Research Institute, Japan Meteorological Agency

  2. www.opentelemac.org

References

  1. Bailly du Bois, P., Garreau, P., Laguionie, P., Korsakissok, I. (2014). Comparison between modelling and measurement of marine dispersion, environmental half-time and 137Cs inventories after the Fukushima Daiichi accident. Ocean Dynamics, 64(3), 361–383.

    Google Scholar 

  2. Behrens, E., Schwarzkopf, F.U., Lübbecke, J.F., Böning, C.W. (2012). Model simulations on the long-term dispersal of 137cs released into the pacific ocean off Fukushima. Environmental Research Letters, 7, 034004.

    Google Scholar 

  3. Brooks, A.N., & Hughes, T.J.R. (1982). Streamline upwind Petrov-Galerkin formulations for convection-dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meths. Appl. Mech. Engrg., 32, 199–259.

    Google Scholar 

  4. Carroll, J., & Harms, I.H. (1999). Uncertainty analysis of partition coefficients in a radionuclide transport model. Water Research, 11(33), 2617–2626.

    Google Scholar 

  5. Choi, Y., Kida, S., Takahashi, K. (2013). The impact of oceanic circulation and phase transfer on the dispersion of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant. Biogeosciences, 10, 4911–4925.

    Google Scholar 

  6. Cunha, C.d.L.d.N., & Rosman, P.C. (2005). A semi-implicit finite element model for natural water bodies. Water Research, 39, 2034–2047.

    CAS  Google Scholar 

  7. Dutra Do Carmo, E.G., & Galeão, A.G. (1991). Feedback Petrov-Galerkin methods for convection-dominated problems. Comp. Meths. Appl. Mechs. Engng., 88, 1–16.

    Google Scholar 

  8. Egbert, G.D., Bennett, A.F., Foreman, M.G. (1994). Topex/ poseidon tides estimated using a global inverse model. Journal of Geophysical Research: Oceans, 99, 24821–24852.

    Google Scholar 

  9. Egbert, G.D., & Erofeeva, S.Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Ocean Technology., 19, 183–204.

    Google Scholar 

  10. Estournel, C., Bosc, E., Bocquet, M., Ulses, C., Marselaix, P., Winiarek, V., Osvath, I., Nguyen, C., Duhaut, T., Lyard, F., Michaud, H., Auclair, F. (2012). Assessment of the amount of 137-Cs released into the Pacific Ocean after the Fuskushima accident and analysis of its dispersion in Japanase coastal waters. Journal of Geophysical Research, 117, C1014.

    Google Scholar 

  11. Flather, R.A. (1976). Results from surge prediction model of the North-West European continental shelf for April, November and December 1973. Institute of oceanography (UK), Report nro. 24.

  12. Galeão, A.C., & Dutra do Carmo, E.G. (1988). A consistent approximated upwind Petrov-Galerkin formulation for convection-dominated problems. Computer Methods in Applied Mechanics and Engineering, 68, 83–95.

    Google Scholar 

  13. García, M. (2008). Sediment transport and morphodynamics. Chapter 2 of sedimentation engineering: processes, Measurements Modeling, and Practice pp. 21–163.

    Google Scholar 

  14. Hervouet, J.-M. (2007). Hydrodynamics of free surface flows: Modelling with the finite element method. ISBN: 978-0-470-03558-0, pp. 360.

  15. Hervouet, J.-M., Razafindrakoto, E., Villaret, C. (2011). Dealing with dry zones in free surface flows: a new class of advection schemes. In Proceedings of the 34th IAHR World Congress 33rd Hydrology and Water Resources Symposium, 10th Conference on Hydraulics in Water engineering: balance and uncertainty - water in a changing world, 26 June - 1 July 2011, Brisbane Australia. Engineers Australia, 2011. ISBN 978-0-85825-868-6.

  16. Higashi, H., Morino, Y., Furuichi, N., Ohara, T. (2015). Ocean dynamic processes causing spatially heterogeneous distribution of sedimentary caesium-137 massively released from the Fukushima Daiichi Nuclear Power Plant. Biogeosciences, 12, 7107–7128.

    CAS  Google Scholar 

  17. Hughes, T.J.R., & Brooks, A.N. (1982). A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline upwind procedure. In Gallagher, R.H., Carey, G.F., Oden, J.T., Zienkiewicz, O.C. (Eds.) Finite elements in fluids IV (pp. 46–65). London: Wiley.

  18. Hughes, T.J.R., Mallet, M., Mizukami, A. (1986). A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Computer Methods in Applied Mechanics and Engineering, 54, 341–355.

    Google Scholar 

  19. IAEA. (1985). Sediment \(K_{d}\) and concentration factors for radionuclides in the marine environment. IAEA Technical report 247. Vienna: International Atomic Energy Agency.

    Google Scholar 

  20. Inomata, Y., Aoyama, M., Tsubono, T., Tsumune, D., Hirose, K. (2016). Spatial and temporal distributions of 134Cs and 137Cs derived from the TEPCO Fukushima Daiichi Nuclear Power Plant accident in the North Pacific Ocean by using optimal interpolation analysis. Environmental Science: Processes & Impacts, 18, 126–136.

    CAS  Google Scholar 

  21. Jayne, S.R., Hogg, N.G., Waterman, S.N., Rainville, L., Donohue, K.A., Randolph Watts, D., Tracey, K.L., McClean, J.L., Maltrud, M.E., Qiu, B., Chen, S. (2009). The Kuroshio extension and its recirculation gyres. Deep Sea Res. Part I 56(12).

    Google Scholar 

  22. Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y., Nakayama, T., Shima, S., Awaji, T. (2011). Preliminary numerical experiments on oceanic dispersion of 131-I and 137-Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. Journal of Nuclear Science and Technology, 48, 1349–1356.

    CAS  Google Scholar 

  23. Kawamura, H., Kobayashi, T., Furuno, A., Usui, N., Kamachi, M. (2014). Numerical simulation on the long-term variation of radioactive cesium concentration in the North Pacific due to the Fukushima disaster. Journal of Environmental Radioactivity, 136, 64–75.

    CAS  Google Scholar 

  24. Kobayashi, T., Otosaka, S., Togawa, O., Hayashi, K. (2007). Development of a non-conservative radionuclides dispersion model in the ocean and its application to surface cesium-137 dispersion in the Irish Sea. Journal of Nuclear Science and Technology, 44, 238–247.

    CAS  Google Scholar 

  25. Kobayashi, T., Nagai, H., Chino, M., Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Daiichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. Journal of Nuclear Science and Technology, 50, 255–264.

    CAS  Google Scholar 

  26. Lamego, F.F. (2013). Advanced nuclear reactors and Tritium impacts: modeling the aquatic pathway. Progress in Nuclear Energy, 68, 9e22.

    Google Scholar 

  27. Lamego, F.F. (2013). Eulerian modeling of radionuclides in surficial water: the case of Ilha Grande Bay (RJ, Brazil). In Integral methods in science and engineering. 1st edn. New York: Springer.

  28. Margvelashvily, N., Maderich, V., Yuschenko, S., Zheleznyak, M. (2000). 3-D numerical modelling of mud and radionuclide transport in the Chernobyl Cooling Pond and Dnieper–Boog Estuary. In Winterwerp, J.C., & Kranenburg, C. (Eds.) Fine sediments dynamics in the marine environnement proceedings of INTERCOH-2000 (pp. 595-610). Elsevier.

  29. Masumoto, Y., Miyazawa, Y., Tsumune, D., Tsubono, T., Kobayashi, T., Kawamura, H., Estournel, C., Marseleix, P., Lanerolle, L., Mehra, A., Garraffo, Z.D. (2012). Oceanic dispersion simulations of 137-Cs released from the Fukushima Daiichi nuclear power plant. Elements, 8, 207–212.

    CAS  Google Scholar 

  30. Mazaheri, M., Samani, J.M., Samani, M.V. (2013). Analytical solution to one-dimensional advection-diffusion equation with several point sources through arbitrary time-dependent emission rate patterns. Journal of Agriculture, Science and Technology, 15, 1231–1245.

    Google Scholar 

  31. Min, B.-I., Periáñez, R., Kim, I.-G. , Suh, K.-S. (2013). Marine dispersion assessment of 137cs released from the Fukushima nuclear accident. Marine Pollution Bulletin, 72, 22–33.

    CAS  Google Scholar 

  32. Miyazawa, Y., Masumoto, Y., Varlamov, S.M., Miyama, T. (2012). Transport simulation of the radionuclide from the shelf to the open ocean around Fukushima. Cont. Shelf Res.

  33. Nakano, M., & Povinec, P.P. (2012). Long-term simulations of the 137cs dispersion from the Fukushima accident in the world ocean. Journal of Environmental Radioactivity, 111, 109–115.

    CAS  Google Scholar 

  34. Onishi, Y., Dummuller, D.C., Trent, D.S. (1989). Preliminary testing of turbulence and radionuclide transport modeling in deep ocean environment. Richland: Report PNL-6853 pacific northwest laboratory.

    Google Scholar 

  35. Onishi, Y., Kurikami, H., Yokuda, S.T. (2014). Preliminary three-dimensional simulation of sediment and cesium transport in the ogi dam reservoir using FLESCOT – Task 6, Subtask 2 Technical Report PNNL-23257. Washington: Pacific Northwest National Laboratory Richland.

    Google Scholar 

  36. Periáñez, R. (1998). A three dimensional \(r-\)coordinate model to simulate the dispersion of radionuclides in the marine environment. Ecological Modelling, 114, 59–70.

    Google Scholar 

  37. Periáñez, R., Abril, J.M., García-León, M. (1996). Modelling the dispersion of non-conservative radionuclides in tidal waters: Part 1. Conceptual and mathematical model. Journal of Environmental Radioactivity, 31, 127–141.

    Google Scholar 

  38. Periáñez, R. (1999). Three dimensional modelling of the tidal dispersion of non-conservative radionuclides in the marine environment. Application to 239,240Pu dispersion in the eastern Irish Sea. Journal of Marine Systems, 22, 37–51.

    Google Scholar 

  39. Periáñez, R. (2003). Redissolution and long-term transport of radionuclides released from a contaminated sediment: a numerical modelling study. Estuarine, Coastal and Shelf Science, 56, 5–14.

    Google Scholar 

  40. Periáñez, R. (2005). Modelling the dispersion of radio nuclides in the marine environment: an introduction. Berlin: Springer. ISBN: 3-540-24875-7.

    Google Scholar 

  41. Periáñez, R. (2012). Modelling the environmental behaviour of pollutants in Algeciras Bay (south Spain). Marine Pollution Bulletin, 64, 221–232.

    Google Scholar 

  42. Periáñez, R., Suh, K.S., Min, B.I. (2012). Local scale marine modelling of Fukushima releases. Assessment of water and sediment contamination and sensitivity to water circulation description. Marine Pollution Bulletin, 64 (11), 2333–2339.

    Google Scholar 

  43. Periáñez, R., Suh, K.-S., Byung-II, M., Casacuberta, N., Masqué, P. (2013). Numerical modeling of the releases of 90Sr from Fukushima to the ocean: an evaluation of the source term. Environmental Science & Technology, 47, 12305–12313.

    Google Scholar 

  44. Periáñez, R., Suh, K.-S., Min, B.-I. (2013). Should we measure plutonium concentrations in marine sediments near Fukushima? Journal of Radioanalytical and Nuclear Chemistry, 298, 635–638.

    Google Scholar 

  45. Periáñez, R., Suh, K.S. , Min, B.I. (2015). Numerical Modeling as a Tool for Managing Nuclear Accidents: The Fukushima Daiichi Case. Energy vol. 4: Nuclear Science.

  46. Periáñez, R., Brovchenko, I., Duffa, C., Jung, K.-T., Kobayashi, T., Lamego, F., Maderich, V., Min, B.-I., Nies, H., Osvath, I., Psaltaki, M., Suh, K.S. (2015). A new comparison of marine dispersion model performances for Fukushima Dai-ichi releases in the frame of IAEA MODARIA program. J. Environ. Radioactivity, 150, 247–269.

    Google Scholar 

  47. Periáñez, R., Bezhenar, R., Brovchenko, I., Duffa, C., Iosjpe, M., Jung, K-T., Kobayashi, T., Lamego, F., Maderich, V., Min, B.-I., Nies, H., Osvath, I., Outola, I., Suh, K.S., de With, G. (2016). Modelling of marine radionuclide dispersion in IAEA MODARIA program: Lessons learnt from the Baltic Sea and Fukushima scenarios. Science of the Total Environment, In press.

  48. Roe, P.L. (1987). Linear advection schemes on triangular meshes. Technical report 8720. Cranfield Institute of Technology.

  49. Roland, A., Zhang, Y.J., Wang, H.V., Meng, Y., Teng, Y.C., Maderich, V., Brovchenko, I., Dutour-Sikiric, M., Zanke, U. (2012). A fully coupled 3D wave-current interaction model on unstructured grids. Journal of Geophysical Research: Oceans, 117.

  50. Rosman, P.C.C. (2001). Modeling shallow water bodies via filtering techniques. Numer Methods Water Resour, 5, 1–162.

    Google Scholar 

  51. Saad, Y. (1994). ILUT: a dual threshold incomplete LU factorization. Numerical Linear Algebra with Applications, 1, 387–402.

    Google Scholar 

  52. Santschi, P.H., & Honeyman, B.D. (1989). Radionuclides in aquatic environments. Radiation Physics and Chemistry, 2(34), 213–240.

    Google Scholar 

  53. Struijs, R. (1994). A Multi-Dimensional Upwind Discretization Method for the Euler Equations on Unstructured Grids. The Netherlands: PhD Thesis, University of Delft.

    Google Scholar 

  54. Suh, K., Jeong, H., Kim, E., Hwang, W., Han, M. (2006). Verification of the Lagrangian particle model using the ETEX experiment. Annals of Nuclear Energy, 33, 1159–1163.

    CAS  Google Scholar 

  55. Suh, K.-S., Han, M.-H., Jung, S.-H., Lee, C.-W. (2009). Numerical simulation for a long-range dispersion of a pollutant using Chernobyl data. Mathematical and Computer Modelling, 49, 337–343.

    Google Scholar 

  56. TEPCO. (2011). (Tokyo Electricity Power Corporation). Available at: http://www.tepco.co.jp/en/.

  57. Terada, H., Katata, G., Chino, M., Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. Journal of Environmental Radioactivity, 112, 141–154.

    CAS  Google Scholar 

  58. Tsujino, H., Motoi, T., Ishikawa, I., Hirabata, M., Nakano, H., Yamanaka, G., Yasuda, T., Ishizaki, H. (2010). Reference manual for the meteorological research institute community ocean model (MRI.COM) version 3. Technical reports of the MRI. 59 meteorological research institute, Tsukuba, Japan.

  59. Usui, N., Ishizaki, S., Fujii, Y., Tsujino, H., Yasuda, T., Kamachi, M. (2006). Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Advances in Space Research 37.

    Google Scholar 

  60. Vives i Batlle, J., Beresford, N.A., Beaugelin-Seiller, K., Bezhenar, R., Brown, J., Cheng, J.J., Cujic, M., Dragovic, S., Duffa, C., Fiévet, B., Hosseini, A., Jung, K.T., Kamboj, S., Keum, D.K., Kryshev, A., LePoire, D., Maderich, V., Min, B.I., Periáñez, R., Sazykina, T., Suh, K.S., Yu, C., Wang, C., Heling, R. (2016). Inter-comparison of dynamic models for radionuclides transfer to marine biota in a Fukushima accident scenario. J. Environ. Radioactivity, 153, 31–50.

    CAS  Google Scholar 

  61. Yasuda, I. (2003). Hydrographic structure and variability in the Kuroshio-Oyashio transition area. Journal of Oceanography, 59, 389–402.

    Google Scholar 

  62. Yasuda, I., Okuda, K., Hirai, M., Ogawa, Y., Mizuno, K., Kudoh, H. (1988). Short-term variations of the Tsugaru Warm Current in autumn. Bull. Tohoku Reg. Fish. Res. Lab., 50, 153–191.

    Google Scholar 

  63. Zhang, Y., & Baptista, A.M. (2008). SELFE: a semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Modelling, 21, 71–96.

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Prof. R. Periáñez, for suggestions and for kindly providing data from the MODARIA programme. The present work benefited from the input of Dr. Agnès Leroy, Mr. Yoann Audouin and Mr. Davide Boscia, who provided valuable technical assistance. The authors wish to thank Dr. Françoise Siclet for her advice during the early steps of the research summarized here.

Funding

This study was supported by the French ANR-Amorad project and performed through a collaboration between the Electricité de France (EDF) and the Saint-Venant Hydraulics Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Bacchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacchi, V., Tassi, P. Three-dimensional Modelling of Radionuclides Dispersion in a Marine Environment with Application to the Fukushima Dai-ichi Case. Environ Model Assess 24, 457–477 (2019). https://doi.org/10.1007/s10666-018-9614-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-018-9614-6

Keywords

Navigation