The Spatial-Scale Effect of an Atmospheric Environmental Impact Assessment in Regional Strategic Environmental Assessment (R-SEA)

  • Xinrui Chen
  • Yan Zhang
  • Yue Wang
  • Qi Yu
  • Weichun Ma


When evaluating the atmospheric environment in regional strategic environment assessment (R-SEA), the variation and choice of the spatial scale have a substantial influence on the conclusions of the assessment. In this study, we used numerical simulation to investigate the spatial-scale effect. Two varying spatial extents and two varying spatial details of pollutant emission data (emission inventories in this case) were provided for numerical modeling, and output distributions of atmospheric pollutants at different air pollution levels were compared. The results show that the resolution and spatial range of data collection do indeed influence the atmospheric prediction and assessment results in R-SEA. The spatial-scale effect is more significant under the air pollution condition than under excellent and good air quality conditions. A comparison of varying spatial extents of emission inventory shows that narrowing the prediction area to a local scale is more conducive to identifying the impact of local pollution sources. A comparison of varying spatial details of emission inventory indicates that a higher resolution is favorable for identifying local high concentrations of pollutants and their locations.


Regional strategic environment assessment Scale effect Spatial extent Spatial detail 



This work was supported by the National Natural Science Foundation of China (Grant No. 71173049).


  1. 1.
    Gunn, J. H., & Noble, B. F. (2009). Integrating cumulative effects in regional strategic environmental assessment frameworks: lessons from practice. Journal of Environmental Assessment Policy and Management, 11(03), 267–290. CrossRefGoogle Scholar
  2. 2.
    Thérivel, R., & Partidário, M. R. (1996). The practice of strategic environmental assessment. London: Earthscan Publication Limited.Google Scholar
  3. 3.
    Fischer, T. B., & Onyango, V. (2012). Strategic environmental assessment-related research projects and journal articles: an overview of the past 20 years. Impact Assessment and Project Appraisal, 30(4), 253–263. CrossRefGoogle Scholar
  4. 4.
    João, E. (2002). How scale affects environmental impact assessment. Environmental Impact Assessment Review, 22(2), 289–310.CrossRefGoogle Scholar
  5. 5.
    João, E. (2007). A research agenda for data and scale issues in strategic environmental assessment (SEA). Environmental Impact Assessment Review, 27(5), 479–491.CrossRefGoogle Scholar
  6. 6.
    Goodchild, M. F. (2011). Scale in GIS: an overview. Geomorphology, 130(1), 5–9.CrossRefGoogle Scholar
  7. 7.
    Tate, N. J., & Atkinson, P. M. (2001). Modelling scale in geographical information science. Chichester: Wiley.Google Scholar
  8. 8.
    Goodchild, M. F., & Quattrochi, D. A. (1997). Introduction: scale, multiscaling, remote sensing, and GIS. In D. A. Quattrochi & M. F. Goodchild (Eds.), Scale in remote sensing and GIS. Boca Raton, FL: Lewis Publishers.Google Scholar
  9. 9.
    Peterson, D. L., & Parker, T. V. (1998). Dimensions of scale in ecology, resource managements and society. In D. L. Peterson & T. V. Parker (Eds.), Ecological scale theory and applications. New York: Columbia University Press.Google Scholar
  10. 10.
    Gontier, M. (2007). Scale issues in the assessment of ecological impacts using a GIS-based habitat model—a case study for the Stockholm region. Environmental Impact Assessment Review, 27(5), 440–459.CrossRefGoogle Scholar
  11. 11.
    João, E. (2007). The importance of data and scale issues for strategic environmental assessment (SEA). Environmental Impact Assessment Review, 27(5), 361–364. CrossRefGoogle Scholar
  12. 12.
    Partidário, M. R. (2007). Scales and associated data—what is enough for SEA needs? Environmental Impact Assessment Review, 27, 460–478.CrossRefGoogle Scholar
  13. 13.
    Li, C. H. (2009). Impact of spatial scales on non-polluting ecological impact evaluation result—using environmental impact assessment of development area as an example. Channel Science(6), 14–15.Google Scholar
  14. 14.
    Karstens, S. A. M., Bots, P. W. G., & Slinger, J. H. (2007). Spatial boundary choice and the views of different actors. Environmental Impact Assessment Review, 27(5), 386–407. CrossRefGoogle Scholar
  15. 15.
    Dehkordi, F. A., Khazaei, N., & Minaei, T. D. (2008). Changing scale in environmental impact assessment (case studies: Sefid roud Dam, Iran and Haizuka Dam, Japan). Journal of Environmental Studies, 34(45), 107–120.Google Scholar
  16. 16.
    Keshkamat, S. S., Kooiman, A., van Maarseveen, M. F. A. M., der Veen, A. V., & Zuidgeest, M. H. P. (2012). A boundary object for scale selection—moderating differences and synergising understanding. Ecological Economics, 76, 15–24. CrossRefGoogle Scholar
  17. 17.
    Huang, Y., Ma, W., & Yu, Q. (2003). Mathematical modeling for air quality prediction in environmental assessment of urban comprehensive transportation planning. Shanghai Environmental Sciences (5), 335–338.Google Scholar
  18. 18.
    Seyfried, M. S., & Wilcox, B. P. (1995). Scale and the nature of spatial variability: field examples having implications for hydrologic modeling. Water Resources Research, 31(1), 173–184. CrossRefGoogle Scholar
  19. 19.
    Trivedi, M. R., Berry, P. M., Morecroft, M. D., & Dawson, T. P. (2008). Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology, 14(5), 1089–1103. CrossRefGoogle Scholar
  20. 20.
    Heng, B. C. P., Scott, C. F., Sander, G. C., Wheatley, A. D., & Chandler, J. H. (2009). Modelling spatial and temporal scale effects in soil erosion. Geophysical Research Abstracts, 11.Google Scholar
  21. 21.
    Stroh, E., Harrie, L., & Gustafsson, S. (2007). A study of spatial resolution in pollution exposure modelling. International Journal of Health Geographics, 6(1), 19. CrossRefGoogle Scholar
  22. 22.
    Tan, J., Zhang, Y., Ma, W., Yu, Q., Wang, J., & Chen, L. (2015). Impact of spatial resolution on air quality simulation: a case study in a highly industrialized area in Shanghai, China. Atmospheric Pollution Research, 6(2), 322–333.CrossRefGoogle Scholar
  23. 23.
    Thompson, T. M., Saari, R. K., & Selin, N. E. (2014). Air quality resolution for health impact assessment: influence of regional characteristics. Atmospheric Chemistry and Physics, 14(2), 969–978. CrossRefGoogle Scholar
  24. 24.
    Skamarock, W. C., & Klemp, J. B. (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227(7), 3465–3485.CrossRefGoogle Scholar
  25. 25.
    Wang, W., Bruyere, C., & Duda, M. (2011). Advanced research WRF (ARW) user’s guide version 3.2.Google Scholar
  26. 26.
    Scire, J. S., Strimaitis, D. G., & Yamartino, R. J. (1999). A user’s guide for the CALPUFF dispersion model. Earth Technology, Concord, MA.Google Scholar
  27. 27.
    Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmospheric Environment, 40(30), 5902–5928. CrossRefGoogle Scholar
  28. 28.
    Tan, J. N., Yu, Q., Ma, W. C., Ma, J. L., Cheng, J., & Zhang, Y. (2014). Development of refined emission inventory of air pollutants: a case study of Shanghai Baoshan District. Acta Scientiae Circumstantiae, 34(5).Google Scholar
  29. 29.
    Tsai, Y. I., & Cheng, M. T. (1999). Visibility and aerosol chemical compositions near the coastal area in Central Taiwan. The Science of Total Environment, 231, 37–51.CrossRefGoogle Scholar
  30. 30.
    Xu, H., Cao, J., Shen, Z., Liu, S., Zhang, T., & Zhou, J. (2015). Characterization of chemical composition for fine particle matter collected in different air quality grades in Xi’an in winter. Science & Technology Review, 33(6), 31–36. Google Scholar
  31. 31.
    Chio, C.-P., Cheng, M.-T., & Wang, C.-F. (2004). Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan. Atmospheric Environment, 38(39), 6893–6905. CrossRefGoogle Scholar
  32. 32.
    Sokhi, R. S., José, R. S., Kitwiroon, N., Fragkou, E., Pérez, J. L., & Middleton, D. R. (2006). Prediction of ozone levels in London using the MM5–CMAQ modelling system. Environmental Modelling & Software, 21(4), 566–576.CrossRefGoogle Scholar
  33. 33.
    Gardner, M. W., & Dorling, S. R. (2000). Statistical surface ozone models: an improved methodology to account for non-linear behaviour. Atmospheric Environment, 34(1), 21–34.CrossRefGoogle Scholar
  34. 34.
    Ma, W. C., Zhao, H. J., Li, L., Zhou, Y. D., Pan, H., & Bao, C. K. (2015). Spatial scale of regional plan environmental impact assessment: the Gaoqiao Town and Pudong New District cases in Shanghai, China. Progress in Geography, 34(6), 739–748. Google Scholar
  35. 35.
    Zhao, Y., Qiu, L., Xu, R., Xie, F., Zhang, Q., Yu, Y., et al. (2015). Advantages of city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China. Atmospheric Chemistry and Physics Discussions, 15(21), 18691–18746. CrossRefGoogle Scholar
  36. 36.
    Stroud, C. A., Makar, P. A., Moran, M. D., Gong, W., Gong, S., Zhang, J., et al. (2011). Impact of model grid spacing on regional- and urban- scale air quality predictions of organic aerosol. Atmospheric Chemistry and Physics, 11(7), 3107–3118. CrossRefGoogle Scholar
  37. 37.
    Markakis, K., Valari, M., Perrussel, O., Sanchez, O., & Honore, C. (2015). Climate forced air-quality modeling at urban scale: sensitivity to model resolution, emissions and meteorology. Atmospheric Chemistry & Physics, 15(4), 4767–4821.Google Scholar
  38. 38.
    Kooiman, A., & Keshkamat, S. S. (2012). Scale in regional environmental planning: the reconstruction of North-Brabant, the Netherlands. Journal of Environmental Assessment Policy and Management, 14(01), 1250004. CrossRefGoogle Scholar
  39. 39.
    State Environmental Protection Administration (SEPA) (2003). Technical guidelines for plan environmental impact assessment (on trial). (HJ/T 130-2003). Access date 1 September 2003
  40. 40.
    State Environmental Protection Administration (SEPA) (2003). Technical guidelines for environmental impact assessment of development area. (HJ/T 131-2003). Access date 1 September 2003
  41. 41.
    Ministry of Environmental Protection of the People's Republic of China (MEP) (2014). Technical guidelines for plan environmental impact assessment general principles. (HJ 130–2014). Access date 1 September 2014
  42. 42.
    Ministry of Environmental Protection of the People's Republic of China (MEP) (2008). Guidelines for environmental impact assessment atmospheric environment. (HJ 2.2-2008). Access date 1 April 2009
  43. 43.
    Huang, S. F., Xia, D. X., Gao, J., & Jiang, J. H. (2012). Strategic environmental assessment of key industry development in the West Taiwan Straits Economic Zone: China Environmental Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental Science and EngineeringFudan UniversityShanghaiChina

Personalised recommendations