Skip to main content

Advertisement

Log in

Future Trends and Mitigation Options for Energy Consumption and Greenhouse Gas Emissions in a Developing Country of the Middle East Region: a Case Study of Lebanon’s Road Transport Sector

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The road transport system in Lebanon is one of the most unsustainable in the Middle East region due to, in large part, the absence of a national transportation strategy. This study proposes mitigation measures based on Lebanon’s commitments for reducing fossil fuel use and CO2 emissions from road transport by increasing the share of fuel-efficient and hybrid electric vehicles and increasing the utilization of the existing bus service. Results show that increasing the market share of fuel-efficient vehicles to 35% in 2040 stabilizes energy use and emissions. The addition of hybrid vehicles to the first strategy, with a target of 10% market share by 2040, leads to 11% additional savings. Increasing the share of bus passenger kilometers traveled to 45% in 2040 leads to a reversal of adverse impacts. A combined strategy of all three measures leads to 63% reductions in 2040 compared to 2010, which is even superior to their cumulative savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. OECD/IEA. (2016). World energy statistics 2016. Paris. https://doi.org/10.1787/9789264263079-en.

  2. U.S. EIA. (2016). International Energy Outlook 2016. International Energy Outlook 2016 (Vol. 0484(2016)). Washington, DC. www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf.

  3. UNEP. (2011). Towards a green economy: pathways to sustainable development and poverty eradication (p. 407). Crowthorne: United Nations Environment Programme Retrieved from http://web.unep.org/greeneconomy/resources/green-economy-report.

    Google Scholar 

  4. BP. (2016). BP statistical review of world energy. London. Retrieved from http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

  5. WEC. (2011). Global transport scenarios 2050. London: World Energy Council. https://doi.org/10.1016/j.enpol.2011.05.049.

    Book  Google Scholar 

  6. Haddad, M., Mansour, C., & Stephan, J. (2015). Unsustainability in emergent systems: a case study of road transport in the Greater Beirut Area. In: Industrial engineering and operations management (IEOM), 2015 International Conference on (pp. 1–10). Dubai: IEEE. https://doi.org/10.1109/IEOM.2015.7093899.

  7. MoE/UNDP/GEF. (2016). Lebanon’s Third National Communication to the UNFCCC. Beirut. Retrieved from http://climatechange.moe.gov.lb/viewfile.aspx?id=239.

  8. Mansour, C., Zgheib, E., & Saba, S. (2011). Evaluating impact of electrified vehicles on fuel consumption and CO 2 emissions reduction in Lebanese driving conditions using onboard GPS survey. Energy Procedia, 6, 261–276). Beirut: Elsevier B.V. https://doi.org/10.1016/j.egypro.2011.05.030.

    Article  Google Scholar 

  9. MOE. (2015). Lebanon’s intended nationally determined contribution under the United Nations framework convention on climate change. Beirut. Retrieved from http://climatechange.moe.gov.lb/Library/Files/UploadedFiles/Republic of Lebanon-INDC-September 2015.pdf.

  10. Mansour, C. J., & Haddad, M. G. (2017). Well-to-wheel assessment for informing transition strategies to low-carbon fuel-vehicles in developing countries dependent on fuel imports: a case-study of road transport in Lebanon. Energy Policy, 107, 167–181. https://doi.org/10.1016/j.enpol.2017.04.031.

    Article  Google Scholar 

  11. Solís, J. C., & Sheinbaum, C. (2013). Energy consumption and greenhouse gas emission trends in Mexican road transport. Energy for Sustainable Development, 17(3), 280–287. https://doi.org/10.1016/j.esd.2012.12.001.

    Article  CAS  Google Scholar 

  12. McCollum, D., & Yang, C. (2009). Achieving deep reductions in US transport greenhouse gas emissions: scenario analysis and policy implications. Energy Policy, 37(12), 5580–5596. https://doi.org/10.1016/j.enpol.2009.08.038.

    Article  Google Scholar 

  13. Månsson, A., Johansson, B., & Nilsson, L. J. (2014). Assessing energy security: an overview of commonly used methodologies. Energy, 73, 1–14. https://doi.org/10.1016/j.energy.2014.06.073.

    Article  Google Scholar 

  14. Dedinec, A., Markovska, N., Taseska, V., Duic, N., & Kanevce, G. (2013). Assessment of climate change mitigation potential of the Macedonian transport sector. Energy, 57, 177–187. https://doi.org/10.1016/j.energy.2013.05.011.

    Article  Google Scholar 

  15. Aggarwal, P., & Jain, S. (2016). Energy demand and CO2 emissions from urban on-road transport in Delhi: current and future projections under various policy measures. Journal of Cleaner Production, 128, 48–61. https://doi.org/10.1016/j.jclepro.2014.12.012.

    Article  Google Scholar 

  16. Ong, H. C., Mahlia, T. M. I., & Masjuki, H. H. (2012). A review on energy pattern and policy for transportation sector in Malaysia. Renewable and Sustainable Energy Reviews, 16(1), 532–542. https://doi.org/10.1016/j.rser.2011.08.019.

    Article  Google Scholar 

  17. Hao, H., Wang, H., & Ouyang, M. (2011). Fuel conservation and GHG (greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet. Energy, 36(11), 6520–6528. https://doi.org/10.1016/j.energy.2011.09.014.

    Article  Google Scholar 

  18. Shen, W., Zhang, A. L., & Han, W. J. (2007). Alternative vehicle fuels strategy in China: well-to-wheel analysis on energy use and greenhouse gases emission. Proceedings of 2006 International Conference on Management Science and Engineering, ICMSE’06 (13th), 1735–1739. doi:https://doi.org/10.1109/ICMSE.2006.314070.

  19. Williamson, S. S., & Emadi, A. (2005). Comparative assessment of hybrid electric and fuel cell vehicles based on comprehensive well-to-wheels efficiency analysis. IEEE Transactions on Vehicular Technology, 54(3), 856–862. https://doi.org/10.1109/TVT.2005.847444.

    Article  Google Scholar 

  20. Ong, H. C., Mahlia, T. M. I., & Masjuki, H. H. (2011). A review on emissions and mitigation strategies for road transport in Malaysia. Renewable and Sustainable Energy Reviews, 15(8), 3516–3522. https://doi.org/10.1016/j.rser.2011.05.006.

    Article  CAS  Google Scholar 

  21. Streimikiene, D., Baležentis, T., & Baležentiene, L. (2013). Comparative assessment of road transport technologies. Renewable and Sustainable Energy Reviews, 20, 611–618. https://doi.org/10.1016/j.rser.2012.12.021.

    Article  CAS  Google Scholar 

  22. Morgadinho, L., Oliveira, C., & Martinho, A. (2015). A qualitative study about perceptions of European automotive sector’s contribution to lower greenhouse gas emissions. Journal of Cleaner Production, 106, 644–653. https://doi.org/10.1016/j.jclepro.2015.01.096.

    Article  CAS  Google Scholar 

  23. Orsi, F., Muratori, M., Rocco, M., Colombo, E., & Rizzoni, G. (2016). A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: primary energy consumption, CO2 emissions, and economic cost. Applied Energy, 169, 197–209. https://doi.org/10.1016/j.apenergy.2016.02.039.

    Article  Google Scholar 

  24. Huo, H., Wu, Y., & Wang, M. (2009). Total versus urban: well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems. Atmospheric Environment, 43(10), 1796–1804. https://doi.org/10.1016/j.atmosenv.2008.12.025.

    Article  CAS  Google Scholar 

  25. MOEW. (2010). Policy paper for the electricity sector. Beirut. Retrieved from climatechange.moe.gov.lb/viewfile.aspx?id=121%0A.

  26. Wen, L., & Bai, L. (2016). System dynamics modeling and policy simulation for urban traffic: a case study in Beijing. Environmental Modeling and Assessment. https://doi.org/10.1007/s10666-016-9539-x.

  27. Pongthanaisawan, J., & Sorapipatana, C. (2013). Greenhouse gas emissions from Thailand’s transport sector: trends and mitigation options. Applied Energy, 101, 288–298. https://doi.org/10.1016/j.apenergy.2011.09.026.

    Article  CAS  Google Scholar 

  28. Liu, X., Ma, S., Tian, J., Jia, N., & Li, G. (2015). A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: a case study of Beijing. Energy Policy, 85, 253–270. https://doi.org/10.1016/j.enpol.2015.06.007.

    Article  CAS  Google Scholar 

  29. Cheng, Y.-H., Chang, Y.-H., & Lu, I. J. (2015). Urban transportation energy and carbon dioxide emission reduction strategies. Applied Energy, 157, 953–973. https://doi.org/10.1016/j.apenergy.2015.01.126.

    Article  CAS  Google Scholar 

  30. Chavez-Baeza, C., & Sheinbaum-Pardo, C. (2014). Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area. Energy, 66(2), 624–634. https://doi.org/10.1016/j.energy.2013.12.047.

    Article  CAS  Google Scholar 

  31. Dalkmann, H., & Brannigan, C. (2007). Transport and climate change initiatives. Eschborn. Retrieved from http://www.sutp.org/files/contents/documents/resources/A_Sourcebook/SB5_EnvironmentandHealth/GIZ_SUTP_SB5e_Transport-and-Climate-Change_EN.pdf.

  32. Acharya, S. R. (2005). Motorization and urban mobility in developing countries exploring policy options through dynamic simulation. Journal of the Eastern Asia Society for Transportation Studies, 6, 4113–4128.

    Google Scholar 

  33. Brand, C., Anable, J., & Tran, M. (2013). Accelerating the transformation to a low carbon passenger transport system: the role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK. Transportation Research Part A: Policy and Practice, 49, 132–148. https://doi.org/10.1016/j.tra.2013.01.010.

    Article  Google Scholar 

  34. Feng, Y. Y., Chen, S. Q., & Zhang, L. X. (2013). System dynamics modeling for urban energy consumption and CO2 emissions: a case study of Beijing, China. Ecological Modelling, 252(1), 44–52. https://doi.org/10.1016/j.ecolmodel.2012.09.008.

    Article  Google Scholar 

  35. Wang, J.-F. J., Lu, H.-P. H., & Peng, H. (2008). System dynamics model of urban transportation system and its application. Journal of Transportation Systems Engineering and Information Technology, 8(3), 83–89. https://doi.org/10.1016/S1570-6672(08)60027-6.

    Article  Google Scholar 

  36. UNECE. (2013). For Future Inland Transport Systems (ForFITS) user manual. Retrieved from http://www.unece.org/trans/theme_forfits.html.

  37. Andrejszki, T., Gangonells, M., Molnar, E., & Török, Á. (2014). ForFITS: a new help in transport decision making for a sustainable future. Periodica Polytechnica Transportation Engineering, 42(2), 119–124. https://doi.org/10.3311/PPtr.7442.

    Article  Google Scholar 

  38. Millard-Ball, A., & Schipper, L. (2011). Are we reaching peak travel? Trends in passenger transport in eight industrialized countries. Transport Reviews, 31(3), 357–378. https://doi.org/10.1080/01441647.2010.518291.

    Article  Google Scholar 

  39. Abbas, K. A., & Bell, M. G. H. (1994). System dynamics applicability to transportation modeling. Transportation Research Part A, 28(5), 373–390. https://doi.org/10.1016/0965-8564(94)90022-1.

    Article  Google Scholar 

  40. Han, J., & Hayashi, Y. (2008). A system dynamics model of CO2 mitigation in China’s inter-city passenger transport. Transportation Research Part D: Transport and Environment, 13(5), 298–305. https://doi.org/10.1016/j.trd.2008.03.005.

    Article  Google Scholar 

  41. Vafa-Arani, H., Jahani, S., Dashti, H., Heydari, J., & Moazen, S. (2014). A system dynamics modeling for urban air pollution: a case study of Tehran, Iran. Transportation Research Part D: Transport and Environment, 31, 21–36. https://doi.org/10.1016/j.trd.2014.05.016.

    Article  Google Scholar 

  42. Fong, W. K., Matsumoto, H., & Lun, Y. F. (2009). Application of system dynamics model as decision making tool in urban planning process toward stabilizing carbon dioxide emissions from cities. Building and Environment, 44(7), 1528–1537. https://doi.org/10.1016/j.buildenv.2008.07.010.

    Article  Google Scholar 

  43. Ventana Systems Inc. (2013). Vensim® user manual. Ventana System, Inc. Retrieved from http://www.vensim.com.

  44. MOE/URC/GEF. (2012). Lebanon technology needs assessment report for climate change. Beirut.

Download references

Acknowledgements

This study was supported by the United Nations Development Programme (UNDP) climate change team and the Lebanese Ministry of Environment (MOE). The authors wish to extend their thanks to the personnel of these agencies, as well as the stakeholder participants in the public and private sectors, for the valuable data and helpful feedback they provided for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Georges Haddad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, M.G., Mansour, C.J. & Afif, C. Future Trends and Mitigation Options for Energy Consumption and Greenhouse Gas Emissions in a Developing Country of the Middle East Region: a Case Study of Lebanon’s Road Transport Sector. Environ Model Assess 23, 263–276 (2018). https://doi.org/10.1007/s10666-017-9579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9579-x

Keywords

Navigation