Skip to main content
Log in

Nonlinear Growth Models for Modelling Time Series of Groundwater Nitrate Concentrations

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this paper, a novel approach of modelling time series of nitrate concentrations in drinking water by nonlinear growth functions is proposed. An almost constant increase in the average values of nitrate concentrations occurred at the Vinokovščak wellfield in the county of Varaždin, Croatia, in the period between 1998 and 2013. Our hypothesis was that the time series would be well adjusted to the nonlinear growth function with asymptotic properties after smoothing performed by the moving average method. We used a general growth model which does not have asymptotic properties and the logistic, Gompertz and Richards functions which do have asymptotic properties. Last three growth functions were modified based on the knowledge of a constant presence of basic nitrate concentrations in the drinking water before growth. The fit of growth curves to experimental data was assessed using R 2 and Aikake’s information criterion. The modified growth functions gave the best fit to the smoothed time series of nitrate concentrations with R 2 ranging from 0.9960 to 0.9986.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adhikary, P. P., Chandrasekharan, H., Chakraborty, D., & Kamble, D. (2010). Assessment of groundwater pollution in West Delhi, India using geostatistical approach. Environmental Monitoring and Assessment, 167(1–4), 599–615. doi:10.1007/s10661-009-1076-5.

    Article  CAS  Google Scholar 

  2. Ağca, N., Karanlık, S., & Ödemiş, B. (2014). Assessment of ammonium, nitrate, phosphate, and heavy metal pollution in groundwater from Amik Plain, southern Turkey. Environmental Monitoring and Assessment, 186(9), 5921–5934. doi:10.1007/s10661-014-3829-z.

    Article  Google Scholar 

  3. Almasri, M. N. (2007). Nitrate contamination of groundwater: a conceptual management framework. Environmental Impact Assessment Review, 27(3), 220–242. doi:10.1016/j.eiar.2006.11.002.

    Article  Google Scholar 

  4. Almasri, M. N., & Kaluarachchi, J. J. (2005). Modular neural network to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environmental Modelling and Software, 20(7), 851–871. doi:10.1016/j.envsoft.2004.05.001.

    Article  Google Scholar 

  5. Arabgol, R., Sartaj, M., & Asghari, K. (2016). Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model. Environmental Modeling and Assessment, 21, 71–82. doi:10.1007/s10666-015-9468-0.

    Article  Google Scholar 

  6. Baba, A., & Tayfur, G. (2011). Groundwater contamination and its effect on health in Turkey. Environmental Monitoring and Assessment, 183(1–4), 77–94. doi:10.1007/s10661-011-1907-z.

    Article  CAS  Google Scholar 

  7. Cole, T. J., Pan, H., & Butler, G. E. (2014). A mixed effects model to estimate timing and intensity of pubertal growth from height and secondary sexual characteristics. Annals of Human Biology, 41(1), 76–83. doi:10.3109/03014460.2013.856472.

    Article  CAS  Google Scholar 

  8. Debele, B., Srinivasan, R., Parlange, J., & Y. (2008). Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling Assessment, 13, 135–153. doi:10.1007/s10666-006-9075-1.

    Article  Google Scholar 

  9. Dokou, Z., Kourgialas, N. N., & Karatzas, G. P. (2015). Assessing groundwater quality in Greece based on spatial and temporal analysis. Environmental Monitoring and Assessment, 187(12), 774. doi:10.1007/s10661-015-4998-0.

    Article  Google Scholar 

  10. Eberhardt, L. L., Breiwick, J. M. (2012). Models for population growth curves. International Scholarly Research Network. ISRN Ecology 2012, Article ID 815016, doi:10.5402/2012/815016.

  11. Ersoy, I. E., Mendes, M., & Keskin, S. (2007). Estimation of parameters of linear and nonlinear growth curve models at early growth stage in California turkeys. Archiv fur Geflugelkunde, 71(4), 175–180.

    Google Scholar 

  12. European Union (EU). (1991). Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Official Journal, L, 375, 0001–0008.

    Google Scholar 

  13. Fan, A. M., & Steinberg, V. E. (1996). Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regulatory Toxicology and Pharmacology, 23(1), 35–43. doi:10.1006/rtph.1996.0006.

    Article  CAS  Google Scholar 

  14. Farmani, R., Henriksen, H. J., & Savic, D. (2009). An evolutionary Bayesian belief network methodology for optimum management of groundwater contamination. Environmental Modelling and Software, 24(3), 303–310. doi:10.1016/j.envsoft.2008.08.005.

    Article  Google Scholar 

  15. Fekedulegn, D., Mac Siurtain, M. P., & Colbert, J. J. (1999). Parameter estimation of nonlinear growth models in forestry. Silva Fennica, 33(4), 327–336. doi:10.14214/sf.653.

    Article  Google Scholar 

  16. France, J., Dijkstra, J., & Dhanoa, M. S. (1996). Growth functions and their application in animal science. Annals De Zootechnie, 45(1), 165–174 doi: 10.105/animres:19960637.

    Article  Google Scholar 

  17. Hajhamad, L., & Almasri, M. N. (2009). Assessment of nitrate cosntamination of groundwater using lumped-parameter models. Environmental Modelling and Software, 24(9), 1073–1087. doi:10.1016/j.envsoft.2009.02.014.

    Article  Google Scholar 

  18. Karkach, A. S. (2006). Trajectories and models of individual growth. Demographic Research, 15(12), 347–400. doi:10.4054/DemRes.2006.15.12.

    Article  Google Scholar 

  19. Kebreab, E., Schulin-Zeuthen, M., Lopez, S., Soler, J., Dias, R. S., de Lange, C. F. M., & France, J. (2007). Comparative evaluation of mathematical functions to describe growth and efficiency of phosphorus utilization in growing pigs. Journal of Animal Science, 85(1), 2498–2507. doi:10.2527/jas.2006-738.

    Article  CAS  Google Scholar 

  20. Khamis, A., Ismail, Z., Heron, K., & Mohammed, A. T. (2005). Nonlinear growth models for modelling oil palm yield growth. Journal of Mathematics and Statistics, 1(3), 225–233.

    Article  Google Scholar 

  21. Koya, P. R., & Goshu, A. T. (2013). Generalized mathematical model for biological growths. Open Journal of Modelling and Simulation, 1, 42–53. doi:10.4236/ojmsi.2013.14008.

    Article  Google Scholar 

  22. Kundu, M. C., & Mandal, B. (2009). Agricultural activities influence nitrate and fluoride contamination in drinking groundwater of an intensively cultivated district in India. Water, Air & Soil Pollution, 198(1–4), 243–252. doi:10.1007/s11270-008-9842-5.

    Article  CAS  Google Scholar 

  23. Mao, X., Prommer, H., Barry, D. A., Langevin, C. D., Panteleit, B., & Li, L. (2006). Tree-dimensional model for multi-component reactive transport with variable density groundwater flow. Environmental Modelling and Software, 21(5), 615–628. doi:10.1016/j.envsoft.2004.11.008.

    Article  Google Scholar 

  24. Mastrocicco, M., Colombani, N., Castaldelli, G., & Jovanovic, N. (2010). Monitoring and modeling nitrate persistence in a shallow aquifer. Water, Air & Soil Pollution, 217(1–4), 83–93. doi:10.1007/s11270-010-0569-8.

    Google Scholar 

  25. McLay, C. D. A., Dragten, R., Sparling, G., & Sevarajah, N. (2001). Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollution, 115(2), 191–204. doi:10.1016/S0269-7491(01)00111-7.

    Article  CAS  Google Scholar 

  26. Motulsky, H. J., & Christopoulos, A. (2003). Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. USA: Oxford University Press.

    Google Scholar 

  27. Mousavi, S. F., & Amiri, M. J. (2012). Modelling nitrate concentration of groundwater using adaptive neural-based fuzzy inference system. Soil and Water Research, 7(2), 73–83.

    Article  CAS  Google Scholar 

  28. Nemčić-Jurec, J., Konjačić, M., & Jazbec, A. (2013). Monitoring of nitrates in drinking water from agricultural and residential areas of Podravina and Prigorje (Croatia). Environmental Monitoring and Assessment, 185(11), 9509–9520. doi:10.1007/s10661-013-3269-1.

    Article  Google Scholar 

  29. Newbold, P., Carlson, W. L., & Thorne, B. (2003). Statistics for business and economics (Fifth ed.). New Jersey: Prentice Hall.

    Google Scholar 

  30. Rammig, A., Bebi, P., Bugmann, H., & Fahse, L. (2007). Adapting a growth equation to model tree regeneration in mountain forests. European Journal of Forest Research, 126(1), 49–57. doi:10.1007/s10342-005-0088-0.

    Article  Google Scholar 

  31. Reddy, A. G. S., Kumar, K. N., Rao, D. S., Rao, S. S. (2009). Assessment of nitrate contamination due to groundwater pollution in north eastern part of Anantapur District,

    Google Scholar 

  32. Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–300. doi:10.1093/jxb/10.2.290.

    Article  Google Scholar 

  33. Sedmak, R., & Scheer, L. (2012). Modelling of tree diameter growth using growth functions parameterised by least squares and Bayesian methods. Journal of Forest Science, 58(6), 245–252.

    Article  Google Scholar 

  34. Smith, J. T., Bowes, M. J., & Clarke, R. T. (2010). Are groundwater nitrate concentrations reaching a turning point in some chalk aquifers? Science of the Total Environment, 408(20), 4722–4732. doi:10.1016/j.scitotenv.2010.07.001.

    Article  CAS  Google Scholar 

  35. Tompić, T., Dobša, J., Legen, S., Tompić, N., & Medić, H. (2011). Modeling the growth patterns of in-season and off-season Ross 308 broiler breeder flocks. Poultry Science, 90(12), 2879–2887. doi:10.3382/ps.2010-01301.

    Article  Google Scholar 

  36. Tait, N. G., Daviso, R. M., & Leharne, D. N. (2008). Borehole optimization system (BOS)—a case study assessing options for abstraction of urban groundwater in Nottingham, UK. Environmental Modelling and Software, 23(5), 611–621. doi:10.1016/j.envsoft.2007.09.001.

    Article  Google Scholar 

  37. Urumović, K. (1991). O kvartnom vodonosnom kompleksu na području Varaždina. Zagreb: Geološki vjesnik, 24.

    Google Scholar 

  38. Urumović, K. (1991). Hidrogeološki uvjeti Varaždinskog vodonosnika. Zagreb: Geološki vjesnik, 43.

    Google Scholar 

  39. Winsor, C. P. (1932). The Gompertz curve as a growth curve. Proceedings of National Academy Science, 18(1), 1–8. doi:10.1073/pnas.18.1.1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasminka Dobša.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobša, J., Kovač, I. Nonlinear Growth Models for Modelling Time Series of Groundwater Nitrate Concentrations. Environ Model Assess 23, 175–184 (2018). https://doi.org/10.1007/s10666-017-9565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9565-3

Keywords

Navigation